Continuous cooling transformation diagram and mechanical properties in weld coarse-grain heat-affected zone of API X70 steel

In the present work, continuous cooling transformation (CCT) of coarse-grained heat-affected zone (CGHAZ) and simulation of Charpy-sized impact specimens were performed using a Gleeble 3800 thermomechanical simulator. Results obtained from the dilation studies show significant effect of cooling rate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sadhana (Bangalore) 2021-06, Vol.46 (2), Article 88
Hauptverfasser: Naik, Ajit Kumar, Roshan, Rakesh, Arora, Kanwer Singh, Shajan, Nikhil, Mishra, Subash Chandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Sadhana (Bangalore)
container_volume 46
creator Naik, Ajit Kumar
Roshan, Rakesh
Arora, Kanwer Singh
Shajan, Nikhil
Mishra, Subash Chandra
description In the present work, continuous cooling transformation (CCT) of coarse-grained heat-affected zone (CGHAZ) and simulation of Charpy-sized impact specimens were performed using a Gleeble 3800 thermomechanical simulator. Results obtained from the dilation studies show significant effect of cooling rates on microstructure and low-temperature (–20 °C) Charpy impact toughness. Phase transformation temperatures ( A r3 and A r1 ) and impact toughness decreased while hardness and amount of bainite increased with increasing cooling rates. At slow cooling condition (< 5 °Cs –1 ) quasi-polygonal ferrite and pearlite phases were observed in the microstructure. At medium cooling rate (5–25 °Cs –1 ), bainite and quasi-polygonal ferrite were obtained in the microstructure. For still faster cooling rates, microstructure was completely bainitic in nature. The microstructures were confirmed by hardness measurement where the hardness value for lower, medium and high cooling rates were 191–196, 213–214 and 234–253 HV, respectively. Charpy impact toughness increased with decrease in cooling rate due to the presence of softer ferrite phase.
doi_str_mv 10.1007/s12046-021-01623-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519366484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519366484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d58513bf0d044cdd248736bea47dcd7ae2ca1234962d6292736e3052bef497df3</originalsourceid><addsrcrecordid>eNp9kEFrGzEQhZfSQp00f6AnQc5KpZFW8h6NSZpAIDkkkJuQpZG9Zi05kkxIyY-vGgdy62mGmffeDF_X_eTsgjOmfxUOTCrKgFPGFQgKX7oZG7SgWmn9tfXQKwpyGL53J6VsGQPN5mLWvS1TrGM8pEMhLqVpjGtSs40lpLyzdUyR-NGus90RGz3ZodvYODo7kX1Oe8x1xELGSF5w8i3A5oK0qdtkg7ZSGwK6ip78SRFJCmRxf0OeNCOlIk4_um_BTgXPPupp93h1-bC8prd3v2-Wi1vqBB8q9f2852IVmGdSOu9BzrVQK7RSe-e1RXCWg5CDAq9ggLZEwXpYYZCD9kGcdufH3Pbz8wFLNdt0yLGdNNDzQSgl57Kp4KhyOZWSMZh9Hnc2vxrOzD_K5kjZNMrmnbKBZhJHU2niuMb8Gf0f11-7DIDh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519366484</pqid></control><display><type>article</type><title>Continuous cooling transformation diagram and mechanical properties in weld coarse-grain heat-affected zone of API X70 steel</title><source>SpringerNature Journals</source><source>Indian Academy of Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Naik, Ajit Kumar ; Roshan, Rakesh ; Arora, Kanwer Singh ; Shajan, Nikhil ; Mishra, Subash Chandra</creator><creatorcontrib>Naik, Ajit Kumar ; Roshan, Rakesh ; Arora, Kanwer Singh ; Shajan, Nikhil ; Mishra, Subash Chandra</creatorcontrib><description>In the present work, continuous cooling transformation (CCT) of coarse-grained heat-affected zone (CGHAZ) and simulation of Charpy-sized impact specimens were performed using a Gleeble 3800 thermomechanical simulator. Results obtained from the dilation studies show significant effect of cooling rates on microstructure and low-temperature (–20 °C) Charpy impact toughness. Phase transformation temperatures ( A r3 and A r1 ) and impact toughness decreased while hardness and amount of bainite increased with increasing cooling rates. At slow cooling condition (&lt; 5 °Cs –1 ) quasi-polygonal ferrite and pearlite phases were observed in the microstructure. At medium cooling rate (5–25 °Cs –1 ), bainite and quasi-polygonal ferrite were obtained in the microstructure. For still faster cooling rates, microstructure was completely bainitic in nature. The microstructures were confirmed by hardness measurement where the hardness value for lower, medium and high cooling rates were 191–196, 213–214 and 234–253 HV, respectively. Charpy impact toughness increased with decrease in cooling rate due to the presence of softer ferrite phase.</description><identifier>ISSN: 0256-2499</identifier><identifier>EISSN: 0973-7677</identifier><identifier>DOI: 10.1007/s12046-021-01623-2</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Bainite ; Cooling effects ; Cooling rate ; Engineering ; Ferrite ; Hardness measurement ; Heat affected zone ; Heat treating ; High strength low alloy steels ; Impact strength ; Low temperature ; Mechanical properties ; Microstructure ; Pearlite ; Phase transitions ; Polygons ; Temperature ; Thermal simulation ; Thermal simulators ; Toughness ; Transformation temperature</subject><ispartof>Sadhana (Bangalore), 2021-06, Vol.46 (2), Article 88</ispartof><rights>Indian Academy of Sciences 2021</rights><rights>Indian Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d58513bf0d044cdd248736bea47dcd7ae2ca1234962d6292736e3052bef497df3</citedby><cites>FETCH-LOGICAL-c319t-d58513bf0d044cdd248736bea47dcd7ae2ca1234962d6292736e3052bef497df3</cites><orcidid>0000-0002-6792-3956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12046-021-01623-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12046-021-01623-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Naik, Ajit Kumar</creatorcontrib><creatorcontrib>Roshan, Rakesh</creatorcontrib><creatorcontrib>Arora, Kanwer Singh</creatorcontrib><creatorcontrib>Shajan, Nikhil</creatorcontrib><creatorcontrib>Mishra, Subash Chandra</creatorcontrib><title>Continuous cooling transformation diagram and mechanical properties in weld coarse-grain heat-affected zone of API X70 steel</title><title>Sadhana (Bangalore)</title><addtitle>Sādhanā</addtitle><description>In the present work, continuous cooling transformation (CCT) of coarse-grained heat-affected zone (CGHAZ) and simulation of Charpy-sized impact specimens were performed using a Gleeble 3800 thermomechanical simulator. Results obtained from the dilation studies show significant effect of cooling rates on microstructure and low-temperature (–20 °C) Charpy impact toughness. Phase transformation temperatures ( A r3 and A r1 ) and impact toughness decreased while hardness and amount of bainite increased with increasing cooling rates. At slow cooling condition (&lt; 5 °Cs –1 ) quasi-polygonal ferrite and pearlite phases were observed in the microstructure. At medium cooling rate (5–25 °Cs –1 ), bainite and quasi-polygonal ferrite were obtained in the microstructure. For still faster cooling rates, microstructure was completely bainitic in nature. The microstructures were confirmed by hardness measurement where the hardness value for lower, medium and high cooling rates were 191–196, 213–214 and 234–253 HV, respectively. Charpy impact toughness increased with decrease in cooling rate due to the presence of softer ferrite phase.</description><subject>Bainite</subject><subject>Cooling effects</subject><subject>Cooling rate</subject><subject>Engineering</subject><subject>Ferrite</subject><subject>Hardness measurement</subject><subject>Heat affected zone</subject><subject>Heat treating</subject><subject>High strength low alloy steels</subject><subject>Impact strength</subject><subject>Low temperature</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Pearlite</subject><subject>Phase transitions</subject><subject>Polygons</subject><subject>Temperature</subject><subject>Thermal simulation</subject><subject>Thermal simulators</subject><subject>Toughness</subject><subject>Transformation temperature</subject><issn>0256-2499</issn><issn>0973-7677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFrGzEQhZfSQp00f6AnQc5KpZFW8h6NSZpAIDkkkJuQpZG9Zi05kkxIyY-vGgdy62mGmffeDF_X_eTsgjOmfxUOTCrKgFPGFQgKX7oZG7SgWmn9tfXQKwpyGL53J6VsGQPN5mLWvS1TrGM8pEMhLqVpjGtSs40lpLyzdUyR-NGus90RGz3ZodvYODo7kX1Oe8x1xELGSF5w8i3A5oK0qdtkg7ZSGwK6ip78SRFJCmRxf0OeNCOlIk4_um_BTgXPPupp93h1-bC8prd3v2-Wi1vqBB8q9f2852IVmGdSOu9BzrVQK7RSe-e1RXCWg5CDAq9ggLZEwXpYYZCD9kGcdufH3Pbz8wFLNdt0yLGdNNDzQSgl57Kp4KhyOZWSMZh9Hnc2vxrOzD_K5kjZNMrmnbKBZhJHU2niuMb8Gf0f11-7DIDh</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Naik, Ajit Kumar</creator><creator>Roshan, Rakesh</creator><creator>Arora, Kanwer Singh</creator><creator>Shajan, Nikhil</creator><creator>Mishra, Subash Chandra</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6792-3956</orcidid></search><sort><creationdate>20210601</creationdate><title>Continuous cooling transformation diagram and mechanical properties in weld coarse-grain heat-affected zone of API X70 steel</title><author>Naik, Ajit Kumar ; Roshan, Rakesh ; Arora, Kanwer Singh ; Shajan, Nikhil ; Mishra, Subash Chandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d58513bf0d044cdd248736bea47dcd7ae2ca1234962d6292736e3052bef497df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bainite</topic><topic>Cooling effects</topic><topic>Cooling rate</topic><topic>Engineering</topic><topic>Ferrite</topic><topic>Hardness measurement</topic><topic>Heat affected zone</topic><topic>Heat treating</topic><topic>High strength low alloy steels</topic><topic>Impact strength</topic><topic>Low temperature</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Pearlite</topic><topic>Phase transitions</topic><topic>Polygons</topic><topic>Temperature</topic><topic>Thermal simulation</topic><topic>Thermal simulators</topic><topic>Toughness</topic><topic>Transformation temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naik, Ajit Kumar</creatorcontrib><creatorcontrib>Roshan, Rakesh</creatorcontrib><creatorcontrib>Arora, Kanwer Singh</creatorcontrib><creatorcontrib>Shajan, Nikhil</creatorcontrib><creatorcontrib>Mishra, Subash Chandra</creatorcontrib><collection>CrossRef</collection><jtitle>Sadhana (Bangalore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naik, Ajit Kumar</au><au>Roshan, Rakesh</au><au>Arora, Kanwer Singh</au><au>Shajan, Nikhil</au><au>Mishra, Subash Chandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous cooling transformation diagram and mechanical properties in weld coarse-grain heat-affected zone of API X70 steel</atitle><jtitle>Sadhana (Bangalore)</jtitle><stitle>Sādhanā</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>46</volume><issue>2</issue><artnum>88</artnum><issn>0256-2499</issn><eissn>0973-7677</eissn><abstract>In the present work, continuous cooling transformation (CCT) of coarse-grained heat-affected zone (CGHAZ) and simulation of Charpy-sized impact specimens were performed using a Gleeble 3800 thermomechanical simulator. Results obtained from the dilation studies show significant effect of cooling rates on microstructure and low-temperature (–20 °C) Charpy impact toughness. Phase transformation temperatures ( A r3 and A r1 ) and impact toughness decreased while hardness and amount of bainite increased with increasing cooling rates. At slow cooling condition (&lt; 5 °Cs –1 ) quasi-polygonal ferrite and pearlite phases were observed in the microstructure. At medium cooling rate (5–25 °Cs –1 ), bainite and quasi-polygonal ferrite were obtained in the microstructure. For still faster cooling rates, microstructure was completely bainitic in nature. The microstructures were confirmed by hardness measurement where the hardness value for lower, medium and high cooling rates were 191–196, 213–214 and 234–253 HV, respectively. Charpy impact toughness increased with decrease in cooling rate due to the presence of softer ferrite phase.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12046-021-01623-2</doi><orcidid>https://orcid.org/0000-0002-6792-3956</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0256-2499
ispartof Sadhana (Bangalore), 2021-06, Vol.46 (2), Article 88
issn 0256-2499
0973-7677
language eng
recordid cdi_proquest_journals_2519366484
source SpringerNature Journals; Indian Academy of Sciences; EZB-FREE-00999 freely available EZB journals
subjects Bainite
Cooling effects
Cooling rate
Engineering
Ferrite
Hardness measurement
Heat affected zone
Heat treating
High strength low alloy steels
Impact strength
Low temperature
Mechanical properties
Microstructure
Pearlite
Phase transitions
Polygons
Temperature
Thermal simulation
Thermal simulators
Toughness
Transformation temperature
title Continuous cooling transformation diagram and mechanical properties in weld coarse-grain heat-affected zone of API X70 steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20cooling%20transformation%20diagram%20and%20mechanical%20properties%20in%20weld%20coarse-grain%20heat-affected%20zone%20of%20API%20X70%20steel&rft.jtitle=Sadhana%20(Bangalore)&rft.au=Naik,%20Ajit%20Kumar&rft.date=2021-06-01&rft.volume=46&rft.issue=2&rft.artnum=88&rft.issn=0256-2499&rft.eissn=0973-7677&rft_id=info:doi/10.1007/s12046-021-01623-2&rft_dat=%3Cproquest_cross%3E2519366484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519366484&rft_id=info:pmid/&rfr_iscdi=true