Limit Shapes for Gibbs Partitions of Sets

This study extends a prior investigation of limit shapes for grand canonical Gibbs ensembles of partitions of integers, which was based on analysis of sums of geometric random variables. Here we compute limit shapes for partitions of sets, which lead to the sums of Poisson random variables. Under mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2021-05, Vol.183 (2), Article 22
Hauptverfasser: Fatkullin, Ibrahim, Xue, Jianfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of statistical physics
container_volume 183
creator Fatkullin, Ibrahim
Xue, Jianfei
description This study extends a prior investigation of limit shapes for grand canonical Gibbs ensembles of partitions of integers, which was based on analysis of sums of geometric random variables. Here we compute limit shapes for partitions of sets, which lead to the sums of Poisson random variables. Under mild monotonicity assumptions on the energy function, we derive all possible limit shapes arising from different asymptotic behaviors of the energy, and also compute local limit shape profiles for cases in which the limit shape is a step function.
doi_str_mv 10.1007/s10955-021-02756-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2519366291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660083205</galeid><sourcerecordid>A660083205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-601ed783ab183bb1f4bb50f62efb50e57abb36b3c25ba6aabb3763b7c770851c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOCJw-pk6T52GMpWoWCQvUckm1SU9pNTdKD_97oCt5kGIYZ3mdmeBG6JjAhAPIuE2g5x0BJTckFVidoRLikuBWEnaIRAKV4Kgk_Rxc5bwGgVS0fodtl2IfSrN7NweXGx9QsgrW5eTGphBJin5vom5Ur-RKdebPL7uq3jtHbw_3r_BEvnxdP89kSd4yrggUQt5aKGUsUs5b4qbUcvKDO1-q4NNYyYVlHuTXCfHdSMCs7KUFx0rExuhn2HlL8OLpc9DYeU19PaspJy4SgLamqyaDamJ3TofexJNPVWLt96GLvfKjzmRAAilHgFaAD0KWYc3JeH1LYm_SpCehvD_Xgoa4e6h8PtaoQG6Bcxf3Gpb9f_qG-AGBkcjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519366291</pqid></control><display><type>article</type><title>Limit Shapes for Gibbs Partitions of Sets</title><source>SpringerNature Journals</source><creator>Fatkullin, Ibrahim ; Xue, Jianfei</creator><creatorcontrib>Fatkullin, Ibrahim ; Xue, Jianfei</creatorcontrib><description>This study extends a prior investigation of limit shapes for grand canonical Gibbs ensembles of partitions of integers, which was based on analysis of sums of geometric random variables. Here we compute limit shapes for partitions of sets, which lead to the sums of Poisson random variables. Under mild monotonicity assumptions on the energy function, we derive all possible limit shapes arising from different asymptotic behaviors of the energy, and also compute local limit shape profiles for cases in which the limit shape is a step function.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-021-02756-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymptotic properties ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Random variables ; Statistical Physics and Dynamical Systems ; Step functions ; Sums ; Theoretical</subject><ispartof>Journal of statistical physics, 2021-05, Vol.183 (2), Article 22</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-601ed783ab183bb1f4bb50f62efb50e57abb36b3c25ba6aabb3763b7c770851c3</citedby><cites>FETCH-LOGICAL-c358t-601ed783ab183bb1f4bb50f62efb50e57abb36b3c25ba6aabb3763b7c770851c3</cites><orcidid>0000-0002-8049-9125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-021-02756-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-021-02756-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fatkullin, Ibrahim</creatorcontrib><creatorcontrib>Xue, Jianfei</creatorcontrib><title>Limit Shapes for Gibbs Partitions of Sets</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>This study extends a prior investigation of limit shapes for grand canonical Gibbs ensembles of partitions of integers, which was based on analysis of sums of geometric random variables. Here we compute limit shapes for partitions of sets, which lead to the sums of Poisson random variables. Under mild monotonicity assumptions on the energy function, we derive all possible limit shapes arising from different asymptotic behaviors of the energy, and also compute local limit shape profiles for cases in which the limit shape is a step function.</description><subject>Asymptotic properties</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Random variables</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Step functions</subject><subject>Sums</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOCJw-pk6T52GMpWoWCQvUckm1SU9pNTdKD_97oCt5kGIYZ3mdmeBG6JjAhAPIuE2g5x0BJTckFVidoRLikuBWEnaIRAKV4Kgk_Rxc5bwGgVS0fodtl2IfSrN7NweXGx9QsgrW5eTGphBJin5vom5Ur-RKdebPL7uq3jtHbw_3r_BEvnxdP89kSd4yrggUQt5aKGUsUs5b4qbUcvKDO1-q4NNYyYVlHuTXCfHdSMCs7KUFx0rExuhn2HlL8OLpc9DYeU19PaspJy4SgLamqyaDamJ3TofexJNPVWLt96GLvfKjzmRAAilHgFaAD0KWYc3JeH1LYm_SpCehvD_Xgoa4e6h8PtaoQG6Bcxf3Gpb9f_qG-AGBkcjw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Fatkullin, Ibrahim</creator><creator>Xue, Jianfei</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8049-9125</orcidid></search><sort><creationdate>20210501</creationdate><title>Limit Shapes for Gibbs Partitions of Sets</title><author>Fatkullin, Ibrahim ; Xue, Jianfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-601ed783ab183bb1f4bb50f62efb50e57abb36b3c25ba6aabb3763b7c770851c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Random variables</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Step functions</topic><topic>Sums</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatkullin, Ibrahim</creatorcontrib><creatorcontrib>Xue, Jianfei</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatkullin, Ibrahim</au><au>Xue, Jianfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limit Shapes for Gibbs Partitions of Sets</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>183</volume><issue>2</issue><artnum>22</artnum><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>This study extends a prior investigation of limit shapes for grand canonical Gibbs ensembles of partitions of integers, which was based on analysis of sums of geometric random variables. Here we compute limit shapes for partitions of sets, which lead to the sums of Poisson random variables. Under mild monotonicity assumptions on the energy function, we derive all possible limit shapes arising from different asymptotic behaviors of the energy, and also compute local limit shape profiles for cases in which the limit shape is a step function.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-021-02756-8</doi><orcidid>https://orcid.org/0000-0002-8049-9125</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2021-05, Vol.183 (2), Article 22
issn 0022-4715
1572-9613
language eng
recordid cdi_proquest_journals_2519366291
source SpringerNature Journals
subjects Asymptotic properties
Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Random variables
Statistical Physics and Dynamical Systems
Step functions
Sums
Theoretical
title Limit Shapes for Gibbs Partitions of Sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limit%20Shapes%20for%20Gibbs%20Partitions%20of%20Sets&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Fatkullin,%20Ibrahim&rft.date=2021-05-01&rft.volume=183&rft.issue=2&rft.artnum=22&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-021-02756-8&rft_dat=%3Cgale_proqu%3EA660083205%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519366291&rft_id=info:pmid/&rft_galeid=A660083205&rfr_iscdi=true