Limit Shapes for Gibbs Partitions of Sets
This study extends a prior investigation of limit shapes for grand canonical Gibbs ensembles of partitions of integers, which was based on analysis of sums of geometric random variables. Here we compute limit shapes for partitions of sets, which lead to the sums of Poisson random variables. Under mi...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2021-05, Vol.183 (2), Article 22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of statistical physics |
container_volume | 183 |
creator | Fatkullin, Ibrahim Xue, Jianfei |
description | This study extends a prior investigation of limit shapes for grand canonical Gibbs ensembles of partitions of integers, which was based on analysis of sums of geometric random variables. Here we compute limit shapes for partitions of sets, which lead to the sums of Poisson random variables. Under mild monotonicity assumptions on the energy function, we derive all possible limit shapes arising from different asymptotic behaviors of the energy, and also compute local limit shape profiles for cases in which the limit shape is a step function. |
doi_str_mv | 10.1007/s10955-021-02756-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2519366291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660083205</galeid><sourcerecordid>A660083205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-601ed783ab183bb1f4bb50f62efb50e57abb36b3c25ba6aabb3763b7c770851c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOCJw-pk6T52GMpWoWCQvUckm1SU9pNTdKD_97oCt5kGIYZ3mdmeBG6JjAhAPIuE2g5x0BJTckFVidoRLikuBWEnaIRAKV4Kgk_Rxc5bwGgVS0fodtl2IfSrN7NweXGx9QsgrW5eTGphBJin5vom5Ur-RKdebPL7uq3jtHbw_3r_BEvnxdP89kSd4yrggUQt5aKGUsUs5b4qbUcvKDO1-q4NNYyYVlHuTXCfHdSMCs7KUFx0rExuhn2HlL8OLpc9DYeU19PaspJy4SgLamqyaDamJ3TofexJNPVWLt96GLvfKjzmRAAilHgFaAD0KWYc3JeH1LYm_SpCehvD_Xgoa4e6h8PtaoQG6Bcxf3Gpb9f_qG-AGBkcjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519366291</pqid></control><display><type>article</type><title>Limit Shapes for Gibbs Partitions of Sets</title><source>SpringerNature Journals</source><creator>Fatkullin, Ibrahim ; Xue, Jianfei</creator><creatorcontrib>Fatkullin, Ibrahim ; Xue, Jianfei</creatorcontrib><description>This study extends a prior investigation of limit shapes for grand canonical Gibbs ensembles of partitions of integers, which was based on analysis of sums of geometric random variables. Here we compute limit shapes for partitions of sets, which lead to the sums of Poisson random variables. Under mild monotonicity assumptions on the energy function, we derive all possible limit shapes arising from different asymptotic behaviors of the energy, and also compute local limit shape profiles for cases in which the limit shape is a step function.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-021-02756-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymptotic properties ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Random variables ; Statistical Physics and Dynamical Systems ; Step functions ; Sums ; Theoretical</subject><ispartof>Journal of statistical physics, 2021-05, Vol.183 (2), Article 22</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-601ed783ab183bb1f4bb50f62efb50e57abb36b3c25ba6aabb3763b7c770851c3</citedby><cites>FETCH-LOGICAL-c358t-601ed783ab183bb1f4bb50f62efb50e57abb36b3c25ba6aabb3763b7c770851c3</cites><orcidid>0000-0002-8049-9125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-021-02756-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-021-02756-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fatkullin, Ibrahim</creatorcontrib><creatorcontrib>Xue, Jianfei</creatorcontrib><title>Limit Shapes for Gibbs Partitions of Sets</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>This study extends a prior investigation of limit shapes for grand canonical Gibbs ensembles of partitions of integers, which was based on analysis of sums of geometric random variables. Here we compute limit shapes for partitions of sets, which lead to the sums of Poisson random variables. Under mild monotonicity assumptions on the energy function, we derive all possible limit shapes arising from different asymptotic behaviors of the energy, and also compute local limit shape profiles for cases in which the limit shape is a step function.</description><subject>Asymptotic properties</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Random variables</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Step functions</subject><subject>Sums</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOCJw-pk6T52GMpWoWCQvUckm1SU9pNTdKD_97oCt5kGIYZ3mdmeBG6JjAhAPIuE2g5x0BJTckFVidoRLikuBWEnaIRAKV4Kgk_Rxc5bwGgVS0fodtl2IfSrN7NweXGx9QsgrW5eTGphBJin5vom5Ur-RKdebPL7uq3jtHbw_3r_BEvnxdP89kSd4yrggUQt5aKGUsUs5b4qbUcvKDO1-q4NNYyYVlHuTXCfHdSMCs7KUFx0rExuhn2HlL8OLpc9DYeU19PaspJy4SgLamqyaDamJ3TofexJNPVWLt96GLvfKjzmRAAilHgFaAD0KWYc3JeH1LYm_SpCehvD_Xgoa4e6h8PtaoQG6Bcxf3Gpb9f_qG-AGBkcjw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Fatkullin, Ibrahim</creator><creator>Xue, Jianfei</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8049-9125</orcidid></search><sort><creationdate>20210501</creationdate><title>Limit Shapes for Gibbs Partitions of Sets</title><author>Fatkullin, Ibrahim ; Xue, Jianfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-601ed783ab183bb1f4bb50f62efb50e57abb36b3c25ba6aabb3763b7c770851c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Random variables</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Step functions</topic><topic>Sums</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatkullin, Ibrahim</creatorcontrib><creatorcontrib>Xue, Jianfei</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatkullin, Ibrahim</au><au>Xue, Jianfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limit Shapes for Gibbs Partitions of Sets</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>183</volume><issue>2</issue><artnum>22</artnum><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>This study extends a prior investigation of limit shapes for grand canonical Gibbs ensembles of partitions of integers, which was based on analysis of sums of geometric random variables. Here we compute limit shapes for partitions of sets, which lead to the sums of Poisson random variables. Under mild monotonicity assumptions on the energy function, we derive all possible limit shapes arising from different asymptotic behaviors of the energy, and also compute local limit shape profiles for cases in which the limit shape is a step function.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-021-02756-8</doi><orcidid>https://orcid.org/0000-0002-8049-9125</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2021-05, Vol.183 (2), Article 22 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_proquest_journals_2519366291 |
source | SpringerNature Journals |
subjects | Asymptotic properties Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Random variables Statistical Physics and Dynamical Systems Step functions Sums Theoretical |
title | Limit Shapes for Gibbs Partitions of Sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limit%20Shapes%20for%20Gibbs%20Partitions%20of%20Sets&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Fatkullin,%20Ibrahim&rft.date=2021-05-01&rft.volume=183&rft.issue=2&rft.artnum=22&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-021-02756-8&rft_dat=%3Cgale_proqu%3EA660083205%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519366291&rft_id=info:pmid/&rft_galeid=A660083205&rfr_iscdi=true |