Spectral methods for nonlinear functionals and functional differential equations
We present a rigorous convergence analysis for cylindrical approximations of nonlinear functionals, functional derivatives, and functional differential equations (FDEs). The purpose of this analysis is twofold: First, we prove that continuous nonlinear functionals, functional derivatives, and FDEs c...
Gespeichert in:
Veröffentlicht in: | Research in the mathematical sciences 2021-06, Vol.8 (2), Article 27 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Research in the mathematical sciences |
container_volume | 8 |
creator | Venturi, Daniele Dektor, Alec |
description | We present a rigorous convergence analysis for cylindrical approximations of nonlinear functionals, functional derivatives, and functional differential equations (FDEs). The purpose of this analysis is twofold: First, we prove that continuous nonlinear functionals, functional derivatives, and FDEs can be approximated uniformly on any compact subset of a real Banach space admitting a basis by high-dimensional multivariate functions and high-dimensional partial differential equations (PDEs), respectively. Second, we show that the convergence rate of such functional approximations can be exponential, depending on the regularity of the functional (in particular its Fréchet differentiability), and its domain. We also provide necessary and sufficient conditions for consistency, stability and convergence of cylindrical approximations to linear FDEs. These results open the possibility to utilize numerical techniques for high-dimensional systems such as deep neural networks and numerical tensor methods to approximate nonlinear functionals in terms of high-dimensional functions, and compute approximate solutions to FDEs by solving high-dimensional PDEs. Numerical examples are presented and discussed for prototype nonlinear functionals and for an initial value problem involving a linear FDE. |
doi_str_mv | 10.1007/s40687-021-00265-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519366250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519366250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-1b273f02d045ad6bd4a0da49b1f73ca2b3d60eed7a6886e43c1f3463d5439dc73</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKsB19GbxyQzSyk-CgUFdR0yeeiUNmmTmYX_3tQRdOXq3nM553D5ELokcE0A5E3mIBqJgRIMQEWN-QmaUdJK3DZcnpa9phQD4fwcLXLeAACRgnEGM_T8sndmSHpb7dzwEW2ufExViGHbB6dT5cdghj4Gvc2VDvaPrmzvvUsuDH0R7jDq4z1foDNfzG7xM-fo7f7udfmI108Pq-XtGhsm2IBJRyXzQC3wWlvRWa7Bat52xEtmNO2YFeCclVo0jXCcGeIZF8zWnLXWSDZHV1PvPsXD6PKgNnFMxz8VrUnLhKA1FBedXCbFnJPzap_6nU6fioA6wlMTPFXgqW94ipcQm0K5mMO7S7_V_6S-AGd4cuY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519366250</pqid></control><display><type>article</type><title>Spectral methods for nonlinear functionals and functional differential equations</title><source>SpringerLink Journals</source><creator>Venturi, Daniele ; Dektor, Alec</creator><creatorcontrib>Venturi, Daniele ; Dektor, Alec</creatorcontrib><description>We present a rigorous convergence analysis for cylindrical approximations of nonlinear functionals, functional derivatives, and functional differential equations (FDEs). The purpose of this analysis is twofold: First, we prove that continuous nonlinear functionals, functional derivatives, and FDEs can be approximated uniformly on any compact subset of a real Banach space admitting a basis by high-dimensional multivariate functions and high-dimensional partial differential equations (PDEs), respectively. Second, we show that the convergence rate of such functional approximations can be exponential, depending on the regularity of the functional (in particular its Fréchet differentiability), and its domain. We also provide necessary and sufficient conditions for consistency, stability and convergence of cylindrical approximations to linear FDEs. These results open the possibility to utilize numerical techniques for high-dimensional systems such as deep neural networks and numerical tensor methods to approximate nonlinear functionals in terms of high-dimensional functions, and compute approximate solutions to FDEs by solving high-dimensional PDEs. Numerical examples are presented and discussed for prototype nonlinear functionals and for an initial value problem involving a linear FDE.</description><identifier>ISSN: 2522-0144</identifier><identifier>EISSN: 2197-9847</identifier><identifier>DOI: 10.1007/s40687-021-00265-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Approximation ; Artificial neural networks ; Banach spaces ; Boundary value problems ; Computational Mathematics and Numerical Analysis ; Continuity (mathematics) ; Convergence ; Derivatives ; Functionals ; Mathematics ; Mathematics and Statistics ; Numerical methods ; Partial differential equations ; Spectral methods ; Tensors</subject><ispartof>Research in the mathematical sciences, 2021-06, Vol.8 (2), Article 27</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-1b273f02d045ad6bd4a0da49b1f73ca2b3d60eed7a6886e43c1f3463d5439dc73</citedby><cites>FETCH-LOGICAL-c363t-1b273f02d045ad6bd4a0da49b1f73ca2b3d60eed7a6886e43c1f3463d5439dc73</cites><orcidid>0000-0001-8831-8547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40687-021-00265-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40687-021-00265-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Venturi, Daniele</creatorcontrib><creatorcontrib>Dektor, Alec</creatorcontrib><title>Spectral methods for nonlinear functionals and functional differential equations</title><title>Research in the mathematical sciences</title><addtitle>Res Math Sci</addtitle><description>We present a rigorous convergence analysis for cylindrical approximations of nonlinear functionals, functional derivatives, and functional differential equations (FDEs). The purpose of this analysis is twofold: First, we prove that continuous nonlinear functionals, functional derivatives, and FDEs can be approximated uniformly on any compact subset of a real Banach space admitting a basis by high-dimensional multivariate functions and high-dimensional partial differential equations (PDEs), respectively. Second, we show that the convergence rate of such functional approximations can be exponential, depending on the regularity of the functional (in particular its Fréchet differentiability), and its domain. We also provide necessary and sufficient conditions for consistency, stability and convergence of cylindrical approximations to linear FDEs. These results open the possibility to utilize numerical techniques for high-dimensional systems such as deep neural networks and numerical tensor methods to approximate nonlinear functionals in terms of high-dimensional functions, and compute approximate solutions to FDEs by solving high-dimensional PDEs. Numerical examples are presented and discussed for prototype nonlinear functionals and for an initial value problem involving a linear FDE.</description><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Banach spaces</subject><subject>Boundary value problems</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Continuity (mathematics)</subject><subject>Convergence</subject><subject>Derivatives</subject><subject>Functionals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical methods</subject><subject>Partial differential equations</subject><subject>Spectral methods</subject><subject>Tensors</subject><issn>2522-0144</issn><issn>2197-9847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWGr_gKsB19GbxyQzSyk-CgUFdR0yeeiUNmmTmYX_3tQRdOXq3nM553D5ELokcE0A5E3mIBqJgRIMQEWN-QmaUdJK3DZcnpa9phQD4fwcLXLeAACRgnEGM_T8sndmSHpb7dzwEW2ufExViGHbB6dT5cdghj4Gvc2VDvaPrmzvvUsuDH0R7jDq4z1foDNfzG7xM-fo7f7udfmI108Pq-XtGhsm2IBJRyXzQC3wWlvRWa7Bat52xEtmNO2YFeCclVo0jXCcGeIZF8zWnLXWSDZHV1PvPsXD6PKgNnFMxz8VrUnLhKA1FBedXCbFnJPzap_6nU6fioA6wlMTPFXgqW94ipcQm0K5mMO7S7_V_6S-AGd4cuY</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Venturi, Daniele</creator><creator>Dektor, Alec</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8831-8547</orcidid></search><sort><creationdate>20210601</creationdate><title>Spectral methods for nonlinear functionals and functional differential equations</title><author>Venturi, Daniele ; Dektor, Alec</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-1b273f02d045ad6bd4a0da49b1f73ca2b3d60eed7a6886e43c1f3463d5439dc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Banach spaces</topic><topic>Boundary value problems</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Continuity (mathematics)</topic><topic>Convergence</topic><topic>Derivatives</topic><topic>Functionals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical methods</topic><topic>Partial differential equations</topic><topic>Spectral methods</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venturi, Daniele</creatorcontrib><creatorcontrib>Dektor, Alec</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Research in the mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venturi, Daniele</au><au>Dektor, Alec</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral methods for nonlinear functionals and functional differential equations</atitle><jtitle>Research in the mathematical sciences</jtitle><stitle>Res Math Sci</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>8</volume><issue>2</issue><artnum>27</artnum><issn>2522-0144</issn><eissn>2197-9847</eissn><abstract>We present a rigorous convergence analysis for cylindrical approximations of nonlinear functionals, functional derivatives, and functional differential equations (FDEs). The purpose of this analysis is twofold: First, we prove that continuous nonlinear functionals, functional derivatives, and FDEs can be approximated uniformly on any compact subset of a real Banach space admitting a basis by high-dimensional multivariate functions and high-dimensional partial differential equations (PDEs), respectively. Second, we show that the convergence rate of such functional approximations can be exponential, depending on the regularity of the functional (in particular its Fréchet differentiability), and its domain. We also provide necessary and sufficient conditions for consistency, stability and convergence of cylindrical approximations to linear FDEs. These results open the possibility to utilize numerical techniques for high-dimensional systems such as deep neural networks and numerical tensor methods to approximate nonlinear functionals in terms of high-dimensional functions, and compute approximate solutions to FDEs by solving high-dimensional PDEs. Numerical examples are presented and discussed for prototype nonlinear functionals and for an initial value problem involving a linear FDE.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40687-021-00265-4</doi><orcidid>https://orcid.org/0000-0001-8831-8547</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2522-0144 |
ispartof | Research in the mathematical sciences, 2021-06, Vol.8 (2), Article 27 |
issn | 2522-0144 2197-9847 |
language | eng |
recordid | cdi_proquest_journals_2519366250 |
source | SpringerLink Journals |
subjects | Applications of Mathematics Approximation Artificial neural networks Banach spaces Boundary value problems Computational Mathematics and Numerical Analysis Continuity (mathematics) Convergence Derivatives Functionals Mathematics Mathematics and Statistics Numerical methods Partial differential equations Spectral methods Tensors |
title | Spectral methods for nonlinear functionals and functional differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20methods%20for%20nonlinear%20functionals%20and%20functional%20differential%20equations&rft.jtitle=Research%20in%20the%20mathematical%20sciences&rft.au=Venturi,%20Daniele&rft.date=2021-06-01&rft.volume=8&rft.issue=2&rft.artnum=27&rft.issn=2522-0144&rft.eissn=2197-9847&rft_id=info:doi/10.1007/s40687-021-00265-4&rft_dat=%3Cproquest_cross%3E2519366250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519366250&rft_id=info:pmid/&rfr_iscdi=true |