Spectral methods for nonlinear functionals and functional differential equations

We present a rigorous convergence analysis for cylindrical approximations of nonlinear functionals, functional derivatives, and functional differential equations (FDEs). The purpose of this analysis is twofold: First, we prove that continuous nonlinear functionals, functional derivatives, and FDEs c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in the mathematical sciences 2021-06, Vol.8 (2), Article 27
Hauptverfasser: Venturi, Daniele, Dektor, Alec
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Research in the mathematical sciences
container_volume 8
creator Venturi, Daniele
Dektor, Alec
description We present a rigorous convergence analysis for cylindrical approximations of nonlinear functionals, functional derivatives, and functional differential equations (FDEs). The purpose of this analysis is twofold: First, we prove that continuous nonlinear functionals, functional derivatives, and FDEs can be approximated uniformly on any compact subset of a real Banach space admitting a basis by high-dimensional multivariate functions and high-dimensional partial differential equations (PDEs), respectively. Second, we show that the convergence rate of such functional approximations can be exponential, depending on the regularity of the functional (in particular its Fréchet differentiability), and its domain. We also provide necessary and sufficient conditions for consistency, stability and convergence of cylindrical approximations to linear FDEs. These results open the possibility to utilize numerical techniques for high-dimensional systems such as deep neural networks and numerical tensor methods to approximate nonlinear functionals in terms of high-dimensional functions, and compute approximate solutions to FDEs by solving high-dimensional PDEs. Numerical examples are presented and discussed for prototype nonlinear functionals and for an initial value problem involving a linear FDE.
doi_str_mv 10.1007/s40687-021-00265-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519366250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519366250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-1b273f02d045ad6bd4a0da49b1f73ca2b3d60eed7a6886e43c1f3463d5439dc73</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKsB19GbxyQzSyk-CgUFdR0yeeiUNmmTmYX_3tQRdOXq3nM553D5ELokcE0A5E3mIBqJgRIMQEWN-QmaUdJK3DZcnpa9phQD4fwcLXLeAACRgnEGM_T8sndmSHpb7dzwEW2ufExViGHbB6dT5cdghj4Gvc2VDvaPrmzvvUsuDH0R7jDq4z1foDNfzG7xM-fo7f7udfmI108Pq-XtGhsm2IBJRyXzQC3wWlvRWa7Bat52xEtmNO2YFeCclVo0jXCcGeIZF8zWnLXWSDZHV1PvPsXD6PKgNnFMxz8VrUnLhKA1FBedXCbFnJPzap_6nU6fioA6wlMTPFXgqW94ipcQm0K5mMO7S7_V_6S-AGd4cuY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519366250</pqid></control><display><type>article</type><title>Spectral methods for nonlinear functionals and functional differential equations</title><source>SpringerLink Journals</source><creator>Venturi, Daniele ; Dektor, Alec</creator><creatorcontrib>Venturi, Daniele ; Dektor, Alec</creatorcontrib><description>We present a rigorous convergence analysis for cylindrical approximations of nonlinear functionals, functional derivatives, and functional differential equations (FDEs). The purpose of this analysis is twofold: First, we prove that continuous nonlinear functionals, functional derivatives, and FDEs can be approximated uniformly on any compact subset of a real Banach space admitting a basis by high-dimensional multivariate functions and high-dimensional partial differential equations (PDEs), respectively. Second, we show that the convergence rate of such functional approximations can be exponential, depending on the regularity of the functional (in particular its Fréchet differentiability), and its domain. We also provide necessary and sufficient conditions for consistency, stability and convergence of cylindrical approximations to linear FDEs. These results open the possibility to utilize numerical techniques for high-dimensional systems such as deep neural networks and numerical tensor methods to approximate nonlinear functionals in terms of high-dimensional functions, and compute approximate solutions to FDEs by solving high-dimensional PDEs. Numerical examples are presented and discussed for prototype nonlinear functionals and for an initial value problem involving a linear FDE.</description><identifier>ISSN: 2522-0144</identifier><identifier>EISSN: 2197-9847</identifier><identifier>DOI: 10.1007/s40687-021-00265-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Approximation ; Artificial neural networks ; Banach spaces ; Boundary value problems ; Computational Mathematics and Numerical Analysis ; Continuity (mathematics) ; Convergence ; Derivatives ; Functionals ; Mathematics ; Mathematics and Statistics ; Numerical methods ; Partial differential equations ; Spectral methods ; Tensors</subject><ispartof>Research in the mathematical sciences, 2021-06, Vol.8 (2), Article 27</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-1b273f02d045ad6bd4a0da49b1f73ca2b3d60eed7a6886e43c1f3463d5439dc73</citedby><cites>FETCH-LOGICAL-c363t-1b273f02d045ad6bd4a0da49b1f73ca2b3d60eed7a6886e43c1f3463d5439dc73</cites><orcidid>0000-0001-8831-8547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40687-021-00265-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40687-021-00265-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Venturi, Daniele</creatorcontrib><creatorcontrib>Dektor, Alec</creatorcontrib><title>Spectral methods for nonlinear functionals and functional differential equations</title><title>Research in the mathematical sciences</title><addtitle>Res Math Sci</addtitle><description>We present a rigorous convergence analysis for cylindrical approximations of nonlinear functionals, functional derivatives, and functional differential equations (FDEs). The purpose of this analysis is twofold: First, we prove that continuous nonlinear functionals, functional derivatives, and FDEs can be approximated uniformly on any compact subset of a real Banach space admitting a basis by high-dimensional multivariate functions and high-dimensional partial differential equations (PDEs), respectively. Second, we show that the convergence rate of such functional approximations can be exponential, depending on the regularity of the functional (in particular its Fréchet differentiability), and its domain. We also provide necessary and sufficient conditions for consistency, stability and convergence of cylindrical approximations to linear FDEs. These results open the possibility to utilize numerical techniques for high-dimensional systems such as deep neural networks and numerical tensor methods to approximate nonlinear functionals in terms of high-dimensional functions, and compute approximate solutions to FDEs by solving high-dimensional PDEs. Numerical examples are presented and discussed for prototype nonlinear functionals and for an initial value problem involving a linear FDE.</description><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Banach spaces</subject><subject>Boundary value problems</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Continuity (mathematics)</subject><subject>Convergence</subject><subject>Derivatives</subject><subject>Functionals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical methods</subject><subject>Partial differential equations</subject><subject>Spectral methods</subject><subject>Tensors</subject><issn>2522-0144</issn><issn>2197-9847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWGr_gKsB19GbxyQzSyk-CgUFdR0yeeiUNmmTmYX_3tQRdOXq3nM553D5ELokcE0A5E3mIBqJgRIMQEWN-QmaUdJK3DZcnpa9phQD4fwcLXLeAACRgnEGM_T8sndmSHpb7dzwEW2ufExViGHbB6dT5cdghj4Gvc2VDvaPrmzvvUsuDH0R7jDq4z1foDNfzG7xM-fo7f7udfmI108Pq-XtGhsm2IBJRyXzQC3wWlvRWa7Bat52xEtmNO2YFeCclVo0jXCcGeIZF8zWnLXWSDZHV1PvPsXD6PKgNnFMxz8VrUnLhKA1FBedXCbFnJPzap_6nU6fioA6wlMTPFXgqW94ipcQm0K5mMO7S7_V_6S-AGd4cuY</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Venturi, Daniele</creator><creator>Dektor, Alec</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8831-8547</orcidid></search><sort><creationdate>20210601</creationdate><title>Spectral methods for nonlinear functionals and functional differential equations</title><author>Venturi, Daniele ; Dektor, Alec</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-1b273f02d045ad6bd4a0da49b1f73ca2b3d60eed7a6886e43c1f3463d5439dc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Banach spaces</topic><topic>Boundary value problems</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Continuity (mathematics)</topic><topic>Convergence</topic><topic>Derivatives</topic><topic>Functionals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical methods</topic><topic>Partial differential equations</topic><topic>Spectral methods</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venturi, Daniele</creatorcontrib><creatorcontrib>Dektor, Alec</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Research in the mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venturi, Daniele</au><au>Dektor, Alec</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral methods for nonlinear functionals and functional differential equations</atitle><jtitle>Research in the mathematical sciences</jtitle><stitle>Res Math Sci</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>8</volume><issue>2</issue><artnum>27</artnum><issn>2522-0144</issn><eissn>2197-9847</eissn><abstract>We present a rigorous convergence analysis for cylindrical approximations of nonlinear functionals, functional derivatives, and functional differential equations (FDEs). The purpose of this analysis is twofold: First, we prove that continuous nonlinear functionals, functional derivatives, and FDEs can be approximated uniformly on any compact subset of a real Banach space admitting a basis by high-dimensional multivariate functions and high-dimensional partial differential equations (PDEs), respectively. Second, we show that the convergence rate of such functional approximations can be exponential, depending on the regularity of the functional (in particular its Fréchet differentiability), and its domain. We also provide necessary and sufficient conditions for consistency, stability and convergence of cylindrical approximations to linear FDEs. These results open the possibility to utilize numerical techniques for high-dimensional systems such as deep neural networks and numerical tensor methods to approximate nonlinear functionals in terms of high-dimensional functions, and compute approximate solutions to FDEs by solving high-dimensional PDEs. Numerical examples are presented and discussed for prototype nonlinear functionals and for an initial value problem involving a linear FDE.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40687-021-00265-4</doi><orcidid>https://orcid.org/0000-0001-8831-8547</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2522-0144
ispartof Research in the mathematical sciences, 2021-06, Vol.8 (2), Article 27
issn 2522-0144
2197-9847
language eng
recordid cdi_proquest_journals_2519366250
source SpringerLink Journals
subjects Applications of Mathematics
Approximation
Artificial neural networks
Banach spaces
Boundary value problems
Computational Mathematics and Numerical Analysis
Continuity (mathematics)
Convergence
Derivatives
Functionals
Mathematics
Mathematics and Statistics
Numerical methods
Partial differential equations
Spectral methods
Tensors
title Spectral methods for nonlinear functionals and functional differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20methods%20for%20nonlinear%20functionals%20and%20functional%20differential%20equations&rft.jtitle=Research%20in%20the%20mathematical%20sciences&rft.au=Venturi,%20Daniele&rft.date=2021-06-01&rft.volume=8&rft.issue=2&rft.artnum=27&rft.issn=2522-0144&rft.eissn=2197-9847&rft_id=info:doi/10.1007/s40687-021-00265-4&rft_dat=%3Cproquest_cross%3E2519366250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519366250&rft_id=info:pmid/&rfr_iscdi=true