Film formation and foamability of cellulose derivatives: Influence of co-binders and substrate properties on coating holdout

Foams were prepared from hydrophobically modified ethyl(hydroxyethyl) cellulose (EHEC), methyl nanocellulose, and native microfibrillated cellulose (MFC). Their film- and foam-forming abilities, stabilities, and suitabilities for foam coating on different substrates were investigated. The role of EH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresources 2021-02, Vol.16 (1), p.597-613
Hauptverfasser: Lyytikäinen, Johanna, Ovaska, Sami-Seppo, Heiskanen, Isto, Backfolk, Kaj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Foams were prepared from hydrophobically modified ethyl(hydroxyethyl) cellulose (EHEC), methyl nanocellulose, and native microfibrillated cellulose (MFC). Their film- and foam-forming abilities, stabilities, and suitabilities for foam coating on different substrates were investigated. The role of EHEC as a polymeric stabilizing agent was also studied. The EHEC-MFC foams showed greater stability and water-holding ability under pressurized dewatering than MFC foams prepared in the presence of a surfactant. A foam could be created with methyl nanocellulose without any foaming agent. Selected nanocellulose gels and foam formulations were used to coat various substrates. The surface was efficiently closed by gel and foam coatings prepared from the methyl nanocellulose and EHEC solutions, which was ascribed to good coating holdout. Coatings on papers with different levels of smoothness/density and hydrophobicity/ hydrophilicity confirmed that foam-substrate interactions affected the coat quality. The air permeance was reduced by 99% and 64% with a methyl nanocellulose coating and an EHEC-MFC coating, respectively. An EHEC-MFC coating created a hydrophobic surface on a hydrophilic substrate, and methyl nanocellulose improved the oil resistance even at a low coat weight.
ISSN:1930-2126
1930-2126
DOI:10.15376/biores.16.1.597-613