Quantifying air–water turbulence with moment field equations

Energy transfer in turbulent fluids is non-Gaussian. We quantify non-Gaussian energy transfer between the atmosphere and bodies of water using a turbulent diffusion operator coupled with temporally self-affine velocity distributions and a recursive integration method that produce multifractal measur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2021-04, Vol.917, Article A39
Hauptverfasser: Conroy, Colton J., Mandli, Kyle T., Kubatko, Ethan J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 917
creator Conroy, Colton J.
Mandli, Kyle T.
Kubatko, Ethan J.
description Energy transfer in turbulent fluids is non-Gaussian. We quantify non-Gaussian energy transfer between the atmosphere and bodies of water using a turbulent diffusion operator coupled with temporally self-affine velocity distributions and a recursive integration method that produce multifractal measures. The measures serve as input to a system of moment field equations (derived from Navier–Stokes) that generate and track high-frequency gravity waves that propagate through the water surface (as a result of the air–water interactions). The dimension of the support of the air–water turbulence produced by our methods falls within the range of theory and observation, and correspondingly, hindcast statistical measures of the water-wave surface such as significant water-wave height and wave period are well correlated to observational buoy data. Further, our recursive integration method can be used by spectral resolving phase-averaged models to interpolate temporal wind data to smaller scales to capture the non-Gaussian behaviour of the air–water interaction.
doi_str_mv 10.1017/jfm.2021.242
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519238725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2021_242</cupid><sourcerecordid>2519238725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-3ad81149da5c09396589fcde9800aff561e5cf43dc92e6b029af396660fb3ff53</originalsourceid><addsrcrecordid>eNptkM1KxDAUhYMoOI7ufICCW1tvkjZtNoIM_sGACLoOaXozZpi2M0nKMDvfwTf0SewwghtXZ3G_ew58hFxSyCjQ8mZp24wBoxnL2RGZ0FzItBR5cUwmAIyllDI4JWchLAEoB1lOyO3roLvo7M51i0Q7__35tdURfRIHXw8r7AwmWxc_krZvsYuJdbhqEtwMOrq-C-fkxOpVwIvfnJL3h_u32VM6f3l8nt3NU8NziCnXTUVpLhtdGJBciqKS1jQoKwBtbSEoFsbmvDGSoaiBSW1HSgiwNR_vfEquDr1r328GDFEt-8F346RiBZWMVyXbU9cHyvg-BI9Wrb1rtd8pCmpvSI2G1N6QGg2NePaL67b2rlngX-u_Dz8hqmlm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519238725</pqid></control><display><type>article</type><title>Quantifying air–water turbulence with moment field equations</title><source>Cambridge University Press Journals Complete</source><creator>Conroy, Colton J. ; Mandli, Kyle T. ; Kubatko, Ethan J.</creator><creatorcontrib>Conroy, Colton J. ; Mandli, Kyle T. ; Kubatko, Ethan J.</creatorcontrib><description>Energy transfer in turbulent fluids is non-Gaussian. We quantify non-Gaussian energy transfer between the atmosphere and bodies of water using a turbulent diffusion operator coupled with temporally self-affine velocity distributions and a recursive integration method that produce multifractal measures. The measures serve as input to a system of moment field equations (derived from Navier–Stokes) that generate and track high-frequency gravity waves that propagate through the water surface (as a result of the air–water interactions). The dimension of the support of the air–water turbulence produced by our methods falls within the range of theory and observation, and correspondingly, hindcast statistical measures of the water-wave surface such as significant water-wave height and wave period are well correlated to observational buoy data. Further, our recursive integration method can be used by spectral resolving phase-averaged models to interpolate temporal wind data to smaller scales to capture the non-Gaussian behaviour of the air–water interaction.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2021.242</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aerodynamics ; Air ; Air-water interactions ; Atmospheric models ; Buoys ; Computational fluid dynamics ; Cyclones ; Dimensions ; Eddy diffusion ; Energy ; Energy transfer ; Fluid flow ; Fluids ; Gravity waves ; Hurricanes ; Integration ; JFM Papers ; Partial differential equations ; Rain ; Random variables ; Statistical analysis ; Tidal waves ; Turbulence ; Turbulent diffusion ; Vortices ; Water ; Water waves ; Wave height ; Wave period ; Wind data</subject><ispartof>Journal of fluid mechanics, 2021-04, Vol.917, Article A39</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-3ad81149da5c09396589fcde9800aff561e5cf43dc92e6b029af396660fb3ff53</citedby><cites>FETCH-LOGICAL-c340t-3ad81149da5c09396589fcde9800aff561e5cf43dc92e6b029af396660fb3ff53</cites><orcidid>0000-0003-3018-5539 ; 0000-0002-8267-5989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112021002421/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Conroy, Colton J.</creatorcontrib><creatorcontrib>Mandli, Kyle T.</creatorcontrib><creatorcontrib>Kubatko, Ethan J.</creatorcontrib><title>Quantifying air–water turbulence with moment field equations</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Energy transfer in turbulent fluids is non-Gaussian. We quantify non-Gaussian energy transfer between the atmosphere and bodies of water using a turbulent diffusion operator coupled with temporally self-affine velocity distributions and a recursive integration method that produce multifractal measures. The measures serve as input to a system of moment field equations (derived from Navier–Stokes) that generate and track high-frequency gravity waves that propagate through the water surface (as a result of the air–water interactions). The dimension of the support of the air–water turbulence produced by our methods falls within the range of theory and observation, and correspondingly, hindcast statistical measures of the water-wave surface such as significant water-wave height and wave period are well correlated to observational buoy data. Further, our recursive integration method can be used by spectral resolving phase-averaged models to interpolate temporal wind data to smaller scales to capture the non-Gaussian behaviour of the air–water interaction.</description><subject>Aerodynamics</subject><subject>Air</subject><subject>Air-water interactions</subject><subject>Atmospheric models</subject><subject>Buoys</subject><subject>Computational fluid dynamics</subject><subject>Cyclones</subject><subject>Dimensions</subject><subject>Eddy diffusion</subject><subject>Energy</subject><subject>Energy transfer</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Gravity waves</subject><subject>Hurricanes</subject><subject>Integration</subject><subject>JFM Papers</subject><subject>Partial differential equations</subject><subject>Rain</subject><subject>Random variables</subject><subject>Statistical analysis</subject><subject>Tidal waves</subject><subject>Turbulence</subject><subject>Turbulent diffusion</subject><subject>Vortices</subject><subject>Water</subject><subject>Water waves</subject><subject>Wave height</subject><subject>Wave period</subject><subject>Wind data</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkM1KxDAUhYMoOI7ufICCW1tvkjZtNoIM_sGACLoOaXozZpi2M0nKMDvfwTf0SewwghtXZ3G_ew58hFxSyCjQ8mZp24wBoxnL2RGZ0FzItBR5cUwmAIyllDI4JWchLAEoB1lOyO3roLvo7M51i0Q7__35tdURfRIHXw8r7AwmWxc_krZvsYuJdbhqEtwMOrq-C-fkxOpVwIvfnJL3h_u32VM6f3l8nt3NU8NziCnXTUVpLhtdGJBciqKS1jQoKwBtbSEoFsbmvDGSoaiBSW1HSgiwNR_vfEquDr1r328GDFEt-8F346RiBZWMVyXbU9cHyvg-BI9Wrb1rtd8pCmpvSI2G1N6QGg2NePaL67b2rlngX-u_Dz8hqmlm</recordid><startdate>20210429</startdate><enddate>20210429</enddate><creator>Conroy, Colton J.</creator><creator>Mandli, Kyle T.</creator><creator>Kubatko, Ethan J.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3018-5539</orcidid><orcidid>https://orcid.org/0000-0002-8267-5989</orcidid></search><sort><creationdate>20210429</creationdate><title>Quantifying air–water turbulence with moment field equations</title><author>Conroy, Colton J. ; Mandli, Kyle T. ; Kubatko, Ethan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-3ad81149da5c09396589fcde9800aff561e5cf43dc92e6b029af396660fb3ff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Air</topic><topic>Air-water interactions</topic><topic>Atmospheric models</topic><topic>Buoys</topic><topic>Computational fluid dynamics</topic><topic>Cyclones</topic><topic>Dimensions</topic><topic>Eddy diffusion</topic><topic>Energy</topic><topic>Energy transfer</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Gravity waves</topic><topic>Hurricanes</topic><topic>Integration</topic><topic>JFM Papers</topic><topic>Partial differential equations</topic><topic>Rain</topic><topic>Random variables</topic><topic>Statistical analysis</topic><topic>Tidal waves</topic><topic>Turbulence</topic><topic>Turbulent diffusion</topic><topic>Vortices</topic><topic>Water</topic><topic>Water waves</topic><topic>Wave height</topic><topic>Wave period</topic><topic>Wind data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conroy, Colton J.</creatorcontrib><creatorcontrib>Mandli, Kyle T.</creatorcontrib><creatorcontrib>Kubatko, Ethan J.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conroy, Colton J.</au><au>Mandli, Kyle T.</au><au>Kubatko, Ethan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying air–water turbulence with moment field equations</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-04-29</date><risdate>2021</risdate><volume>917</volume><artnum>A39</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Energy transfer in turbulent fluids is non-Gaussian. We quantify non-Gaussian energy transfer between the atmosphere and bodies of water using a turbulent diffusion operator coupled with temporally self-affine velocity distributions and a recursive integration method that produce multifractal measures. The measures serve as input to a system of moment field equations (derived from Navier–Stokes) that generate and track high-frequency gravity waves that propagate through the water surface (as a result of the air–water interactions). The dimension of the support of the air–water turbulence produced by our methods falls within the range of theory and observation, and correspondingly, hindcast statistical measures of the water-wave surface such as significant water-wave height and wave period are well correlated to observational buoy data. Further, our recursive integration method can be used by spectral resolving phase-averaged models to interpolate temporal wind data to smaller scales to capture the non-Gaussian behaviour of the air–water interaction.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2021.242</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0003-3018-5539</orcidid><orcidid>https://orcid.org/0000-0002-8267-5989</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2021-04, Vol.917, Article A39
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2519238725
source Cambridge University Press Journals Complete
subjects Aerodynamics
Air
Air-water interactions
Atmospheric models
Buoys
Computational fluid dynamics
Cyclones
Dimensions
Eddy diffusion
Energy
Energy transfer
Fluid flow
Fluids
Gravity waves
Hurricanes
Integration
JFM Papers
Partial differential equations
Rain
Random variables
Statistical analysis
Tidal waves
Turbulence
Turbulent diffusion
Vortices
Water
Water waves
Wave height
Wave period
Wind data
title Quantifying air–water turbulence with moment field equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20air%E2%80%93water%20turbulence%20with%20moment%20field%20equations&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Conroy,%20Colton%20J.&rft.date=2021-04-29&rft.volume=917&rft.artnum=A39&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2021.242&rft_dat=%3Cproquest_cross%3E2519238725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519238725&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2021_242&rfr_iscdi=true