THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP

The first fundamental theorem of invariant theory for the orthosymplectic supergroup scheme $\text{OSp}(m|2n)$ states that there is a full functor from the Brauer category with parameter $m-2n$ to the category of tensor representations of $\text{OSp}(m|2n)$. This has recently been proved using algeb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 2021-06, Vol.242, p.52-76
Hauptverfasser: LEHRER, G. I., ZHANG, R. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue
container_start_page 52
container_title Nagoya mathematical journal
container_volume 242
creator LEHRER, G. I.
ZHANG, R. B.
description The first fundamental theorem of invariant theory for the orthosymplectic supergroup scheme $\text{OSp}(m|2n)$ states that there is a full functor from the Brauer category with parameter $m-2n$ to the category of tensor representations of $\text{OSp}(m|2n)$. This has recently been proved using algebraic supergeometry to relate the problem to the invariant theory of the general linear supergroup. In this work, we use the same circle of ideas to prove the second fundamental theorem for the orthosymplectic supergroup. Specifically, we give a linear description of the kernel of the surjective homomorphism from the Brauer algebra to endomorphisms of tensor space, which commute with the orthosymplectic supergroup. The main result has a clear and succinct formulation in terms of Brauer diagrams. Our proof includes, as special cases, new proofs of the corresponding second fundamental theorems for the classical orthogonal and symplectic groups, as well as their quantum analogues, which are independent of the Capelli identities. The results of this paper have led to the result that the map from the Brauer algebra ${\mathcal{B}}_{r}(m-2n)$ to endomorphisms of $V^{\otimes r}$ is an isomorphism if and only if $r
doi_str_mv 10.1017/nmj.2019.25
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519142436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_nmj_2019_25</cupid><sourcerecordid>2519142436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-1d87c4d71fb679348e4bd2ad36ac40fc7040c8fa5987a36f948a6ed7c028474a3</originalsourceid><addsrcrecordid>eNptkE1rwkAURYfSQq3tqn9goMsSO1-ZmSxDnGggZiQmBVdhnCRFqR-d6MJ_34hCN129x-W8--AA8IrRCCMsPnbbzYggHIyIfwcGBPvE45KRezBAiAhPcIoewVPXbRBCkgZ0AMpiquBCRTobw7jMxuFMZUWYwj7WuZpBHcMk-wzzJMyKa7iEsc4vK9R5MdWL5WyeqqhIIrgo5yqf5LqcP4OH1nx3zcttDkEZqyKaeqmeJFGYepZSfvRwLYVltcDtiouAMtmwVU1MTbmxDLVWIIasbI0fSGEobwMmDW9qYRGRTDBDh-Dt2ntw-59T0x2rzf7kdv3Livg4wIwwynvq_UpZt-8617TVwa23xp0rjKqLt6r3Vl289Vc97d1os125df3V_JX-x_8Cujtnhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519142436</pqid></control><display><type>article</type><title>THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP</title><source>Cambridge University Press Journals Complete</source><creator>LEHRER, G. I. ; ZHANG, R. B.</creator><creatorcontrib>LEHRER, G. I. ; ZHANG, R. B.</creatorcontrib><description>The first fundamental theorem of invariant theory for the orthosymplectic supergroup scheme $\text{OSp}(m|2n)$ states that there is a full functor from the Brauer category with parameter $m-2n$ to the category of tensor representations of $\text{OSp}(m|2n)$. This has recently been proved using algebraic supergeometry to relate the problem to the invariant theory of the general linear supergroup. In this work, we use the same circle of ideas to prove the second fundamental theorem for the orthosymplectic supergroup. Specifically, we give a linear description of the kernel of the surjective homomorphism from the Brauer algebra to endomorphisms of tensor space, which commute with the orthosymplectic supergroup. The main result has a clear and succinct formulation in terms of Brauer diagrams. Our proof includes, as special cases, new proofs of the corresponding second fundamental theorems for the classical orthogonal and symplectic groups, as well as their quantum analogues, which are independent of the Capelli identities. The results of this paper have led to the result that the map from the Brauer algebra ${\mathcal{B}}_{r}(m-2n)$ to endomorphisms of $V^{\otimes r}$ is an isomorphism if and only if $r&lt;(m+1)(n+1)$.</description><identifier>ISSN: 0027-7630</identifier><identifier>EISSN: 2152-6842</identifier><identifier>DOI: 10.1017/nmj.2019.25</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Homomorphisms ; Invariants ; Isomorphism ; Mathematical analysis ; Tensors ; Theorems</subject><ispartof>Nagoya mathematical journal, 2021-06, Vol.242, p.52-76</ispartof><rights>2019 Foundation Nagoya Mathematical Journal</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-1d87c4d71fb679348e4bd2ad36ac40fc7040c8fa5987a36f948a6ed7c028474a3</citedby><cites>FETCH-LOGICAL-c336t-1d87c4d71fb679348e4bd2ad36ac40fc7040c8fa5987a36f948a6ed7c028474a3</cites><orcidid>0000-0002-3163-209X ; 0000-0002-7918-7650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0027763019000254/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>LEHRER, G. I.</creatorcontrib><creatorcontrib>ZHANG, R. B.</creatorcontrib><title>THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP</title><title>Nagoya mathematical journal</title><addtitle>Nagoya Math. J</addtitle><description>The first fundamental theorem of invariant theory for the orthosymplectic supergroup scheme $\text{OSp}(m|2n)$ states that there is a full functor from the Brauer category with parameter $m-2n$ to the category of tensor representations of $\text{OSp}(m|2n)$. This has recently been proved using algebraic supergeometry to relate the problem to the invariant theory of the general linear supergroup. In this work, we use the same circle of ideas to prove the second fundamental theorem for the orthosymplectic supergroup. Specifically, we give a linear description of the kernel of the surjective homomorphism from the Brauer algebra to endomorphisms of tensor space, which commute with the orthosymplectic supergroup. The main result has a clear and succinct formulation in terms of Brauer diagrams. Our proof includes, as special cases, new proofs of the corresponding second fundamental theorems for the classical orthogonal and symplectic groups, as well as their quantum analogues, which are independent of the Capelli identities. The results of this paper have led to the result that the map from the Brauer algebra ${\mathcal{B}}_{r}(m-2n)$ to endomorphisms of $V^{\otimes r}$ is an isomorphism if and only if $r&lt;(m+1)(n+1)$.</description><subject>Algebra</subject><subject>Homomorphisms</subject><subject>Invariants</subject><subject>Isomorphism</subject><subject>Mathematical analysis</subject><subject>Tensors</subject><subject>Theorems</subject><issn>0027-7630</issn><issn>2152-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE1rwkAURYfSQq3tqn9goMsSO1-ZmSxDnGggZiQmBVdhnCRFqR-d6MJ_34hCN129x-W8--AA8IrRCCMsPnbbzYggHIyIfwcGBPvE45KRezBAiAhPcIoewVPXbRBCkgZ0AMpiquBCRTobw7jMxuFMZUWYwj7WuZpBHcMk-wzzJMyKa7iEsc4vK9R5MdWL5WyeqqhIIrgo5yqf5LqcP4OH1nx3zcttDkEZqyKaeqmeJFGYepZSfvRwLYVltcDtiouAMtmwVU1MTbmxDLVWIIasbI0fSGEobwMmDW9qYRGRTDBDh-Dt2ntw-59T0x2rzf7kdv3Livg4wIwwynvq_UpZt-8617TVwa23xp0rjKqLt6r3Vl289Vc97d1os125df3V_JX-x_8Cujtnhw</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>LEHRER, G. I.</creator><creator>ZHANG, R. B.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3163-209X</orcidid><orcidid>https://orcid.org/0000-0002-7918-7650</orcidid></search><sort><creationdate>202106</creationdate><title>THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP</title><author>LEHRER, G. I. ; ZHANG, R. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-1d87c4d71fb679348e4bd2ad36ac40fc7040c8fa5987a36f948a6ed7c028474a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Homomorphisms</topic><topic>Invariants</topic><topic>Isomorphism</topic><topic>Mathematical analysis</topic><topic>Tensors</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LEHRER, G. I.</creatorcontrib><creatorcontrib>ZHANG, R. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nagoya mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEHRER, G. I.</au><au>ZHANG, R. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP</atitle><jtitle>Nagoya mathematical journal</jtitle><addtitle>Nagoya Math. J</addtitle><date>2021-06</date><risdate>2021</risdate><volume>242</volume><spage>52</spage><epage>76</epage><pages>52-76</pages><issn>0027-7630</issn><eissn>2152-6842</eissn><abstract>The first fundamental theorem of invariant theory for the orthosymplectic supergroup scheme $\text{OSp}(m|2n)$ states that there is a full functor from the Brauer category with parameter $m-2n$ to the category of tensor representations of $\text{OSp}(m|2n)$. This has recently been proved using algebraic supergeometry to relate the problem to the invariant theory of the general linear supergroup. In this work, we use the same circle of ideas to prove the second fundamental theorem for the orthosymplectic supergroup. Specifically, we give a linear description of the kernel of the surjective homomorphism from the Brauer algebra to endomorphisms of tensor space, which commute with the orthosymplectic supergroup. The main result has a clear and succinct formulation in terms of Brauer diagrams. Our proof includes, as special cases, new proofs of the corresponding second fundamental theorems for the classical orthogonal and symplectic groups, as well as their quantum analogues, which are independent of the Capelli identities. The results of this paper have led to the result that the map from the Brauer algebra ${\mathcal{B}}_{r}(m-2n)$ to endomorphisms of $V^{\otimes r}$ is an isomorphism if and only if $r&lt;(m+1)(n+1)$.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/nmj.2019.25</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-3163-209X</orcidid><orcidid>https://orcid.org/0000-0002-7918-7650</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-7630
ispartof Nagoya mathematical journal, 2021-06, Vol.242, p.52-76
issn 0027-7630
2152-6842
language eng
recordid cdi_proquest_journals_2519142436
source Cambridge University Press Journals Complete
subjects Algebra
Homomorphisms
Invariants
Isomorphism
Mathematical analysis
Tensors
Theorems
title THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20SECOND%20FUNDAMENTAL%20THEOREM%20OF%20INVARIANT%20THEORY%20FOR%20THE%20ORTHOSYMPLECTIC%20SUPERGROUP&rft.jtitle=Nagoya%20mathematical%20journal&rft.au=LEHRER,%20G.%20I.&rft.date=2021-06&rft.volume=242&rft.spage=52&rft.epage=76&rft.pages=52-76&rft.issn=0027-7630&rft.eissn=2152-6842&rft_id=info:doi/10.1017/nmj.2019.25&rft_dat=%3Cproquest_cross%3E2519142436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519142436&rft_id=info:pmid/&rft_cupid=10_1017_nmj_2019_25&rfr_iscdi=true