THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP
The first fundamental theorem of invariant theory for the orthosymplectic supergroup scheme $\text{OSp}(m|2n)$ states that there is a full functor from the Brauer category with parameter $m-2n$ to the category of tensor representations of $\text{OSp}(m|2n)$. This has recently been proved using algeb...
Gespeichert in:
Veröffentlicht in: | Nagoya mathematical journal 2021-06, Vol.242, p.52-76 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | |
container_start_page | 52 |
container_title | Nagoya mathematical journal |
container_volume | 242 |
creator | LEHRER, G. I. ZHANG, R. B. |
description | The first fundamental theorem of invariant theory for the orthosymplectic supergroup scheme $\text{OSp}(m|2n)$ states that there is a full functor from the Brauer category with parameter $m-2n$ to the category of tensor representations of $\text{OSp}(m|2n)$. This has recently been proved using algebraic supergeometry to relate the problem to the invariant theory of the general linear supergroup. In this work, we use the same circle of ideas to prove the second fundamental theorem for the orthosymplectic supergroup. Specifically, we give a linear description of the kernel of the surjective homomorphism from the Brauer algebra to endomorphisms of tensor space, which commute with the orthosymplectic supergroup. The main result has a clear and succinct formulation in terms of Brauer diagrams. Our proof includes, as special cases, new proofs of the corresponding second fundamental theorems for the classical orthogonal and symplectic groups, as well as their quantum analogues, which are independent of the Capelli identities. The results of this paper have led to the result that the map from the Brauer algebra ${\mathcal{B}}_{r}(m-2n)$ to endomorphisms of $V^{\otimes r}$ is an isomorphism if and only if $r |
doi_str_mv | 10.1017/nmj.2019.25 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519142436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_nmj_2019_25</cupid><sourcerecordid>2519142436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-1d87c4d71fb679348e4bd2ad36ac40fc7040c8fa5987a36f948a6ed7c028474a3</originalsourceid><addsrcrecordid>eNptkE1rwkAURYfSQq3tqn9goMsSO1-ZmSxDnGggZiQmBVdhnCRFqR-d6MJ_34hCN129x-W8--AA8IrRCCMsPnbbzYggHIyIfwcGBPvE45KRezBAiAhPcIoewVPXbRBCkgZ0AMpiquBCRTobw7jMxuFMZUWYwj7WuZpBHcMk-wzzJMyKa7iEsc4vK9R5MdWL5WyeqqhIIrgo5yqf5LqcP4OH1nx3zcttDkEZqyKaeqmeJFGYepZSfvRwLYVltcDtiouAMtmwVU1MTbmxDLVWIIasbI0fSGEobwMmDW9qYRGRTDBDh-Dt2ntw-59T0x2rzf7kdv3Livg4wIwwynvq_UpZt-8617TVwa23xp0rjKqLt6r3Vl289Vc97d1os125df3V_JX-x_8Cujtnhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519142436</pqid></control><display><type>article</type><title>THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP</title><source>Cambridge University Press Journals Complete</source><creator>LEHRER, G. I. ; ZHANG, R. B.</creator><creatorcontrib>LEHRER, G. I. ; ZHANG, R. B.</creatorcontrib><description>The first fundamental theorem of invariant theory for the orthosymplectic supergroup scheme $\text{OSp}(m|2n)$ states that there is a full functor from the Brauer category with parameter $m-2n$ to the category of tensor representations of $\text{OSp}(m|2n)$. This has recently been proved using algebraic supergeometry to relate the problem to the invariant theory of the general linear supergroup. In this work, we use the same circle of ideas to prove the second fundamental theorem for the orthosymplectic supergroup. Specifically, we give a linear description of the kernel of the surjective homomorphism from the Brauer algebra to endomorphisms of tensor space, which commute with the orthosymplectic supergroup. The main result has a clear and succinct formulation in terms of Brauer diagrams. Our proof includes, as special cases, new proofs of the corresponding second fundamental theorems for the classical orthogonal and symplectic groups, as well as their quantum analogues, which are independent of the Capelli identities. The results of this paper have led to the result that the map from the Brauer algebra ${\mathcal{B}}_{r}(m-2n)$ to endomorphisms of $V^{\otimes r}$ is an isomorphism if and only if $r<(m+1)(n+1)$.</description><identifier>ISSN: 0027-7630</identifier><identifier>EISSN: 2152-6842</identifier><identifier>DOI: 10.1017/nmj.2019.25</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Homomorphisms ; Invariants ; Isomorphism ; Mathematical analysis ; Tensors ; Theorems</subject><ispartof>Nagoya mathematical journal, 2021-06, Vol.242, p.52-76</ispartof><rights>2019 Foundation Nagoya Mathematical Journal</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-1d87c4d71fb679348e4bd2ad36ac40fc7040c8fa5987a36f948a6ed7c028474a3</citedby><cites>FETCH-LOGICAL-c336t-1d87c4d71fb679348e4bd2ad36ac40fc7040c8fa5987a36f948a6ed7c028474a3</cites><orcidid>0000-0002-3163-209X ; 0000-0002-7918-7650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0027763019000254/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>LEHRER, G. I.</creatorcontrib><creatorcontrib>ZHANG, R. B.</creatorcontrib><title>THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP</title><title>Nagoya mathematical journal</title><addtitle>Nagoya Math. J</addtitle><description>The first fundamental theorem of invariant theory for the orthosymplectic supergroup scheme $\text{OSp}(m|2n)$ states that there is a full functor from the Brauer category with parameter $m-2n$ to the category of tensor representations of $\text{OSp}(m|2n)$. This has recently been proved using algebraic supergeometry to relate the problem to the invariant theory of the general linear supergroup. In this work, we use the same circle of ideas to prove the second fundamental theorem for the orthosymplectic supergroup. Specifically, we give a linear description of the kernel of the surjective homomorphism from the Brauer algebra to endomorphisms of tensor space, which commute with the orthosymplectic supergroup. The main result has a clear and succinct formulation in terms of Brauer diagrams. Our proof includes, as special cases, new proofs of the corresponding second fundamental theorems for the classical orthogonal and symplectic groups, as well as their quantum analogues, which are independent of the Capelli identities. The results of this paper have led to the result that the map from the Brauer algebra ${\mathcal{B}}_{r}(m-2n)$ to endomorphisms of $V^{\otimes r}$ is an isomorphism if and only if $r<(m+1)(n+1)$.</description><subject>Algebra</subject><subject>Homomorphisms</subject><subject>Invariants</subject><subject>Isomorphism</subject><subject>Mathematical analysis</subject><subject>Tensors</subject><subject>Theorems</subject><issn>0027-7630</issn><issn>2152-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE1rwkAURYfSQq3tqn9goMsSO1-ZmSxDnGggZiQmBVdhnCRFqR-d6MJ_34hCN129x-W8--AA8IrRCCMsPnbbzYggHIyIfwcGBPvE45KRezBAiAhPcIoewVPXbRBCkgZ0AMpiquBCRTobw7jMxuFMZUWYwj7WuZpBHcMk-wzzJMyKa7iEsc4vK9R5MdWL5WyeqqhIIrgo5yqf5LqcP4OH1nx3zcttDkEZqyKaeqmeJFGYepZSfvRwLYVltcDtiouAMtmwVU1MTbmxDLVWIIasbI0fSGEobwMmDW9qYRGRTDBDh-Dt2ntw-59T0x2rzf7kdv3Livg4wIwwynvq_UpZt-8617TVwa23xp0rjKqLt6r3Vl289Vc97d1os125df3V_JX-x_8Cujtnhw</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>LEHRER, G. I.</creator><creator>ZHANG, R. B.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3163-209X</orcidid><orcidid>https://orcid.org/0000-0002-7918-7650</orcidid></search><sort><creationdate>202106</creationdate><title>THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP</title><author>LEHRER, G. I. ; ZHANG, R. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-1d87c4d71fb679348e4bd2ad36ac40fc7040c8fa5987a36f948a6ed7c028474a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Homomorphisms</topic><topic>Invariants</topic><topic>Isomorphism</topic><topic>Mathematical analysis</topic><topic>Tensors</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LEHRER, G. I.</creatorcontrib><creatorcontrib>ZHANG, R. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nagoya mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEHRER, G. I.</au><au>ZHANG, R. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP</atitle><jtitle>Nagoya mathematical journal</jtitle><addtitle>Nagoya Math. J</addtitle><date>2021-06</date><risdate>2021</risdate><volume>242</volume><spage>52</spage><epage>76</epage><pages>52-76</pages><issn>0027-7630</issn><eissn>2152-6842</eissn><abstract>The first fundamental theorem of invariant theory for the orthosymplectic supergroup scheme $\text{OSp}(m|2n)$ states that there is a full functor from the Brauer category with parameter $m-2n$ to the category of tensor representations of $\text{OSp}(m|2n)$. This has recently been proved using algebraic supergeometry to relate the problem to the invariant theory of the general linear supergroup. In this work, we use the same circle of ideas to prove the second fundamental theorem for the orthosymplectic supergroup. Specifically, we give a linear description of the kernel of the surjective homomorphism from the Brauer algebra to endomorphisms of tensor space, which commute with the orthosymplectic supergroup. The main result has a clear and succinct formulation in terms of Brauer diagrams. Our proof includes, as special cases, new proofs of the corresponding second fundamental theorems for the classical orthogonal and symplectic groups, as well as their quantum analogues, which are independent of the Capelli identities. The results of this paper have led to the result that the map from the Brauer algebra ${\mathcal{B}}_{r}(m-2n)$ to endomorphisms of $V^{\otimes r}$ is an isomorphism if and only if $r<(m+1)(n+1)$.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/nmj.2019.25</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-3163-209X</orcidid><orcidid>https://orcid.org/0000-0002-7918-7650</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-7630 |
ispartof | Nagoya mathematical journal, 2021-06, Vol.242, p.52-76 |
issn | 0027-7630 2152-6842 |
language | eng |
recordid | cdi_proquest_journals_2519142436 |
source | Cambridge University Press Journals Complete |
subjects | Algebra Homomorphisms Invariants Isomorphism Mathematical analysis Tensors Theorems |
title | THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20SECOND%20FUNDAMENTAL%20THEOREM%20OF%20INVARIANT%20THEORY%20FOR%20THE%20ORTHOSYMPLECTIC%20SUPERGROUP&rft.jtitle=Nagoya%20mathematical%20journal&rft.au=LEHRER,%20G.%20I.&rft.date=2021-06&rft.volume=242&rft.spage=52&rft.epage=76&rft.pages=52-76&rft.issn=0027-7630&rft.eissn=2152-6842&rft_id=info:doi/10.1017/nmj.2019.25&rft_dat=%3Cproquest_cross%3E2519142436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519142436&rft_id=info:pmid/&rft_cupid=10_1017_nmj_2019_25&rfr_iscdi=true |