Mixup Asymmetric Tri-Training for Heartbeat Classification Under Domain Shift

Due to the significant variability in waveforms and characteristics of ECG signals, developing fully automatic (i.e., requires no expert assistance) heartbeat classification algorithms with satisfactory performance on domain-shifted data remains challenging. In this letter, we propose a novel Mixup...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2021, Vol.28, p.718-722
Hauptverfasser: Li, Jiawei, Wang, Guijin, Chen, Ming, Ding, Zijian, Yang, Huazhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!