Pulse Coherent Doppler Profiler Measurement of Bedload Transport
Prior studies demonstrate that bottom velocity measurements from Doppler sonar systems are proportional to bedload transport rates. These observations suggest that acoustically based systems offer a capability for rapid sampling of bedload transport processes. Before these measurements can be fully...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Earth surface 2021-04, Vol.126 (4), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Journal of geophysical research. Earth surface |
container_volume | 126 |
creator | Zedel, Len Hay, Alex E. Wilson, Gregory W. Hare, Jenna |
description | Prior studies demonstrate that bottom velocity measurements from Doppler sonar systems are proportional to bedload transport rates. These observations suggest that acoustically based systems offer a capability for rapid sampling of bedload transport processes. Before these measurements can be fully utilized, validation and understanding of the sampling mechanism are essential. We explore the measurement mechanism through a series of laboratory trials with a field instrument, the multi‐frequency coherent Doppler profiler (MFDop). The MFDop system is a multi‐frequency (1.2–2.2 MHz), bistatic Doppler sonar that provides three‐component ensemble‐averaged velocity profiles over a ∼30 cm depth interval with up to 1 mm resolution at a rate of 50 profiles/sec. Tests of the MFDop system were carried out in the main flume in field‐scale conditions at the St. Anthony Falls Laboratory (SAFL) using 1 ms−1 mean flows over a mobile bed of sand with median grain size d50 = 0.4 mm. We find agreement between MFDop transport measurements and measurements based on bedform migration rates, and sediment traps built into the SAFL flume. Predictions using the Meyer‐Peter and Müller (1948) empirical equation closely match our observations while in contrast, predictions using the Nielsen (1992) equation are a factor of two higher.
Key Points
Field‐scale laboratory trials demonstrate that bedload transport can be measured by bistatic coherent Doppler sonar
Acoustic, bedform migration, sediment trap, and Meyer‐Peter & Muller estimates of bedload all agree |
doi_str_mv | 10.1029/2020JF005572 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519075857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519075857</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3684-53ac5511a23a62c976784c5b28b82984595be33358257dcdc576babbd5b6e94d3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGpv_oAFr64mk51NclNrWy0Vi9RzSHaz2NI2a9JF-u9NqYgn5zKPmY83zCPkktEbRkHdAgU6HVOKKOCE9ICVKleUsdNfTfk5GcS4oqlkGjHokbt5t44uG_oPF9x2lz36tl27kM2Db5YH8eJM7ILbHJa-yR5cvfamzhbBbGPrw-6CnDUmWQx-ep-8j0eL4VM-e508D-9nueGlLHLkpkJkzAA3JVRKlEIWFVqQVoKSBSq0jnOOElDUVV2hKK2xtkZbOlXUvE-ujr5t8J-dizu98l3YppMakCkqUKJI1PWRqoKPMbhGt2G5MWGvGdWHmPTfmBLOj_hX-nX_L6unk7cxMF4U_Bug0Gbr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519075857</pqid></control><display><type>article</type><title>Pulse Coherent Doppler Profiler Measurement of Bedload Transport</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Zedel, Len ; Hay, Alex E. ; Wilson, Gregory W. ; Hare, Jenna</creator><creatorcontrib>Zedel, Len ; Hay, Alex E. ; Wilson, Gregory W. ; Hare, Jenna</creatorcontrib><description>Prior studies demonstrate that bottom velocity measurements from Doppler sonar systems are proportional to bedload transport rates. These observations suggest that acoustically based systems offer a capability for rapid sampling of bedload transport processes. Before these measurements can be fully utilized, validation and understanding of the sampling mechanism are essential. We explore the measurement mechanism through a series of laboratory trials with a field instrument, the multi‐frequency coherent Doppler profiler (MFDop). The MFDop system is a multi‐frequency (1.2–2.2 MHz), bistatic Doppler sonar that provides three‐component ensemble‐averaged velocity profiles over a ∼30 cm depth interval with up to 1 mm resolution at a rate of 50 profiles/sec. Tests of the MFDop system were carried out in the main flume in field‐scale conditions at the St. Anthony Falls Laboratory (SAFL) using 1 ms−1 mean flows over a mobile bed of sand with median grain size d50 = 0.4 mm. We find agreement between MFDop transport measurements and measurements based on bedform migration rates, and sediment traps built into the SAFL flume. Predictions using the Meyer‐Peter and Müller (1948) empirical equation closely match our observations while in contrast, predictions using the Nielsen (1992) equation are a factor of two higher.
Key Points
Field‐scale laboratory trials demonstrate that bedload transport can be measured by bistatic coherent Doppler sonar
Acoustic, bedform migration, sediment trap, and Meyer‐Peter & Muller estimates of bedload all agree</description><identifier>ISSN: 2169-9003</identifier><identifier>EISSN: 2169-9011</identifier><identifier>DOI: 10.1029/2020JF005572</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>acoustics ; Bed load ; Bedforms ; bedload transport ; coherent Doppler ; Doppler sonar ; Doppler sonar systems ; Empirical equations ; Flumes ; Grain size ; Laboratories ; Measurement ; Sampling ; Sediment transport ; Sediment traps ; Sedimentary structures ; Sonar ; Transport processes ; Velocity ; Velocity distribution ; Velocity profiles</subject><ispartof>Journal of geophysical research. Earth surface, 2021-04, Vol.126 (4), p.n/a</ispartof><rights>2021. The Authors.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3684-53ac5511a23a62c976784c5b28b82984595be33358257dcdc576babbd5b6e94d3</citedby><cites>FETCH-LOGICAL-a3684-53ac5511a23a62c976784c5b28b82984595be33358257dcdc576babbd5b6e94d3</cites><orcidid>0000-0002-9015-8973 ; 0000-0002-4727-459X ; 0000-0002-5292-3590 ; 0000-0001-8175-3554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020JF005572$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020JF005572$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,1430,11501,27911,27912,45561,45562,46396,46455,46820,46879</link.rule.ids></links><search><creatorcontrib>Zedel, Len</creatorcontrib><creatorcontrib>Hay, Alex E.</creatorcontrib><creatorcontrib>Wilson, Gregory W.</creatorcontrib><creatorcontrib>Hare, Jenna</creatorcontrib><title>Pulse Coherent Doppler Profiler Measurement of Bedload Transport</title><title>Journal of geophysical research. Earth surface</title><description>Prior studies demonstrate that bottom velocity measurements from Doppler sonar systems are proportional to bedload transport rates. These observations suggest that acoustically based systems offer a capability for rapid sampling of bedload transport processes. Before these measurements can be fully utilized, validation and understanding of the sampling mechanism are essential. We explore the measurement mechanism through a series of laboratory trials with a field instrument, the multi‐frequency coherent Doppler profiler (MFDop). The MFDop system is a multi‐frequency (1.2–2.2 MHz), bistatic Doppler sonar that provides three‐component ensemble‐averaged velocity profiles over a ∼30 cm depth interval with up to 1 mm resolution at a rate of 50 profiles/sec. Tests of the MFDop system were carried out in the main flume in field‐scale conditions at the St. Anthony Falls Laboratory (SAFL) using 1 ms−1 mean flows over a mobile bed of sand with median grain size d50 = 0.4 mm. We find agreement between MFDop transport measurements and measurements based on bedform migration rates, and sediment traps built into the SAFL flume. Predictions using the Meyer‐Peter and Müller (1948) empirical equation closely match our observations while in contrast, predictions using the Nielsen (1992) equation are a factor of two higher.
Key Points
Field‐scale laboratory trials demonstrate that bedload transport can be measured by bistatic coherent Doppler sonar
Acoustic, bedform migration, sediment trap, and Meyer‐Peter & Muller estimates of bedload all agree</description><subject>acoustics</subject><subject>Bed load</subject><subject>Bedforms</subject><subject>bedload transport</subject><subject>coherent Doppler</subject><subject>Doppler sonar</subject><subject>Doppler sonar systems</subject><subject>Empirical equations</subject><subject>Flumes</subject><subject>Grain size</subject><subject>Laboratories</subject><subject>Measurement</subject><subject>Sampling</subject><subject>Sediment transport</subject><subject>Sediment traps</subject><subject>Sedimentary structures</subject><subject>Sonar</subject><subject>Transport processes</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Velocity profiles</subject><issn>2169-9003</issn><issn>2169-9011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kEFLAzEQhYMoWGpv_oAFr64mk51NclNrWy0Vi9RzSHaz2NI2a9JF-u9NqYgn5zKPmY83zCPkktEbRkHdAgU6HVOKKOCE9ICVKleUsdNfTfk5GcS4oqlkGjHokbt5t44uG_oPF9x2lz36tl27kM2Db5YH8eJM7ILbHJa-yR5cvfamzhbBbGPrw-6CnDUmWQx-ep-8j0eL4VM-e508D-9nueGlLHLkpkJkzAA3JVRKlEIWFVqQVoKSBSq0jnOOElDUVV2hKK2xtkZbOlXUvE-ujr5t8J-dizu98l3YppMakCkqUKJI1PWRqoKPMbhGt2G5MWGvGdWHmPTfmBLOj_hX-nX_L6unk7cxMF4U_Bug0Gbr</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Zedel, Len</creator><creator>Hay, Alex E.</creator><creator>Wilson, Gregory W.</creator><creator>Hare, Jenna</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9015-8973</orcidid><orcidid>https://orcid.org/0000-0002-4727-459X</orcidid><orcidid>https://orcid.org/0000-0002-5292-3590</orcidid><orcidid>https://orcid.org/0000-0001-8175-3554</orcidid></search><sort><creationdate>202104</creationdate><title>Pulse Coherent Doppler Profiler Measurement of Bedload Transport</title><author>Zedel, Len ; Hay, Alex E. ; Wilson, Gregory W. ; Hare, Jenna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3684-53ac5511a23a62c976784c5b28b82984595be33358257dcdc576babbd5b6e94d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>acoustics</topic><topic>Bed load</topic><topic>Bedforms</topic><topic>bedload transport</topic><topic>coherent Doppler</topic><topic>Doppler sonar</topic><topic>Doppler sonar systems</topic><topic>Empirical equations</topic><topic>Flumes</topic><topic>Grain size</topic><topic>Laboratories</topic><topic>Measurement</topic><topic>Sampling</topic><topic>Sediment transport</topic><topic>Sediment traps</topic><topic>Sedimentary structures</topic><topic>Sonar</topic><topic>Transport processes</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Velocity profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zedel, Len</creatorcontrib><creatorcontrib>Hay, Alex E.</creatorcontrib><creatorcontrib>Wilson, Gregory W.</creatorcontrib><creatorcontrib>Hare, Jenna</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Earth surface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zedel, Len</au><au>Hay, Alex E.</au><au>Wilson, Gregory W.</au><au>Hare, Jenna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulse Coherent Doppler Profiler Measurement of Bedload Transport</atitle><jtitle>Journal of geophysical research. Earth surface</jtitle><date>2021-04</date><risdate>2021</risdate><volume>126</volume><issue>4</issue><epage>n/a</epage><issn>2169-9003</issn><eissn>2169-9011</eissn><abstract>Prior studies demonstrate that bottom velocity measurements from Doppler sonar systems are proportional to bedload transport rates. These observations suggest that acoustically based systems offer a capability for rapid sampling of bedload transport processes. Before these measurements can be fully utilized, validation and understanding of the sampling mechanism are essential. We explore the measurement mechanism through a series of laboratory trials with a field instrument, the multi‐frequency coherent Doppler profiler (MFDop). The MFDop system is a multi‐frequency (1.2–2.2 MHz), bistatic Doppler sonar that provides three‐component ensemble‐averaged velocity profiles over a ∼30 cm depth interval with up to 1 mm resolution at a rate of 50 profiles/sec. Tests of the MFDop system were carried out in the main flume in field‐scale conditions at the St. Anthony Falls Laboratory (SAFL) using 1 ms−1 mean flows over a mobile bed of sand with median grain size d50 = 0.4 mm. We find agreement between MFDop transport measurements and measurements based on bedform migration rates, and sediment traps built into the SAFL flume. Predictions using the Meyer‐Peter and Müller (1948) empirical equation closely match our observations while in contrast, predictions using the Nielsen (1992) equation are a factor of two higher.
Key Points
Field‐scale laboratory trials demonstrate that bedload transport can be measured by bistatic coherent Doppler sonar
Acoustic, bedform migration, sediment trap, and Meyer‐Peter & Muller estimates of bedload all agree</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2020JF005572</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9015-8973</orcidid><orcidid>https://orcid.org/0000-0002-4727-459X</orcidid><orcidid>https://orcid.org/0000-0002-5292-3590</orcidid><orcidid>https://orcid.org/0000-0001-8175-3554</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9003 |
ispartof | Journal of geophysical research. Earth surface, 2021-04, Vol.126 (4), p.n/a |
issn | 2169-9003 2169-9011 |
language | eng |
recordid | cdi_proquest_journals_2519075857 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library |
subjects | acoustics Bed load Bedforms bedload transport coherent Doppler Doppler sonar Doppler sonar systems Empirical equations Flumes Grain size Laboratories Measurement Sampling Sediment transport Sediment traps Sedimentary structures Sonar Transport processes Velocity Velocity distribution Velocity profiles |
title | Pulse Coherent Doppler Profiler Measurement of Bedload Transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulse%20Coherent%20Doppler%20Profiler%20Measurement%20of%20Bedload%20Transport&rft.jtitle=Journal%20of%20geophysical%20research.%20Earth%20surface&rft.au=Zedel,%20Len&rft.date=2021-04&rft.volume=126&rft.issue=4&rft.epage=n/a&rft.issn=2169-9003&rft.eissn=2169-9011&rft_id=info:doi/10.1029/2020JF005572&rft_dat=%3Cproquest_cross%3E2519075857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519075857&rft_id=info:pmid/&rfr_iscdi=true |