Pulse Coherent Doppler Profiler Measurement of Bedload Transport

Prior studies demonstrate that bottom velocity measurements from Doppler sonar systems are proportional to bedload transport rates. These observations suggest that acoustically based systems offer a capability for rapid sampling of bedload transport processes. Before these measurements can be fully...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Earth surface 2021-04, Vol.126 (4), p.n/a
Hauptverfasser: Zedel, Len, Hay, Alex E., Wilson, Gregory W., Hare, Jenna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Journal of geophysical research. Earth surface
container_volume 126
creator Zedel, Len
Hay, Alex E.
Wilson, Gregory W.
Hare, Jenna
description Prior studies demonstrate that bottom velocity measurements from Doppler sonar systems are proportional to bedload transport rates. These observations suggest that acoustically based systems offer a capability for rapid sampling of bedload transport processes. Before these measurements can be fully utilized, validation and understanding of the sampling mechanism are essential. We explore the measurement mechanism through a series of laboratory trials with a field instrument, the multi‐frequency coherent Doppler profiler (MFDop). The MFDop system is a multi‐frequency (1.2–2.2 MHz), bistatic Doppler sonar that provides three‐component ensemble‐averaged velocity profiles over a ∼30 cm depth interval with up to 1 mm resolution at a rate of 50 profiles/sec. Tests of the MFDop system were carried out in the main flume in field‐scale conditions at the St. Anthony Falls Laboratory (SAFL) using 1 ms−1 mean flows over a mobile bed of sand with median grain size d50 = 0.4 mm. We find agreement between MFDop transport measurements and measurements based on bedform migration rates, and sediment traps built into the SAFL flume. Predictions using the Meyer‐Peter and Müller (1948) empirical equation closely match our observations while in contrast, predictions using the Nielsen (1992) equation are a factor of two higher. Key Points Field‐scale laboratory trials demonstrate that bedload transport can be measured by bistatic coherent Doppler sonar Acoustic, bedform migration, sediment trap, and Meyer‐Peter & Muller estimates of bedload all agree
doi_str_mv 10.1029/2020JF005572
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519075857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519075857</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3684-53ac5511a23a62c976784c5b28b82984595be33358257dcdc576babbd5b6e94d3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGpv_oAFr64mk51NclNrWy0Vi9RzSHaz2NI2a9JF-u9NqYgn5zKPmY83zCPkktEbRkHdAgU6HVOKKOCE9ICVKleUsdNfTfk5GcS4oqlkGjHokbt5t44uG_oPF9x2lz36tl27kM2Db5YH8eJM7ILbHJa-yR5cvfamzhbBbGPrw-6CnDUmWQx-ep-8j0eL4VM-e508D-9nueGlLHLkpkJkzAA3JVRKlEIWFVqQVoKSBSq0jnOOElDUVV2hKK2xtkZbOlXUvE-ujr5t8J-dizu98l3YppMakCkqUKJI1PWRqoKPMbhGt2G5MWGvGdWHmPTfmBLOj_hX-nX_L6unk7cxMF4U_Bug0Gbr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519075857</pqid></control><display><type>article</type><title>Pulse Coherent Doppler Profiler Measurement of Bedload Transport</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Zedel, Len ; Hay, Alex E. ; Wilson, Gregory W. ; Hare, Jenna</creator><creatorcontrib>Zedel, Len ; Hay, Alex E. ; Wilson, Gregory W. ; Hare, Jenna</creatorcontrib><description>Prior studies demonstrate that bottom velocity measurements from Doppler sonar systems are proportional to bedload transport rates. These observations suggest that acoustically based systems offer a capability for rapid sampling of bedload transport processes. Before these measurements can be fully utilized, validation and understanding of the sampling mechanism are essential. We explore the measurement mechanism through a series of laboratory trials with a field instrument, the multi‐frequency coherent Doppler profiler (MFDop). The MFDop system is a multi‐frequency (1.2–2.2 MHz), bistatic Doppler sonar that provides three‐component ensemble‐averaged velocity profiles over a ∼30 cm depth interval with up to 1 mm resolution at a rate of 50 profiles/sec. Tests of the MFDop system were carried out in the main flume in field‐scale conditions at the St. Anthony Falls Laboratory (SAFL) using 1 ms−1 mean flows over a mobile bed of sand with median grain size d50 = 0.4 mm. We find agreement between MFDop transport measurements and measurements based on bedform migration rates, and sediment traps built into the SAFL flume. Predictions using the Meyer‐Peter and Müller (1948) empirical equation closely match our observations while in contrast, predictions using the Nielsen (1992) equation are a factor of two higher. Key Points Field‐scale laboratory trials demonstrate that bedload transport can be measured by bistatic coherent Doppler sonar Acoustic, bedform migration, sediment trap, and Meyer‐Peter &amp; Muller estimates of bedload all agree</description><identifier>ISSN: 2169-9003</identifier><identifier>EISSN: 2169-9011</identifier><identifier>DOI: 10.1029/2020JF005572</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>acoustics ; Bed load ; Bedforms ; bedload transport ; coherent Doppler ; Doppler sonar ; Doppler sonar systems ; Empirical equations ; Flumes ; Grain size ; Laboratories ; Measurement ; Sampling ; Sediment transport ; Sediment traps ; Sedimentary structures ; Sonar ; Transport processes ; Velocity ; Velocity distribution ; Velocity profiles</subject><ispartof>Journal of geophysical research. Earth surface, 2021-04, Vol.126 (4), p.n/a</ispartof><rights>2021. The Authors.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3684-53ac5511a23a62c976784c5b28b82984595be33358257dcdc576babbd5b6e94d3</citedby><cites>FETCH-LOGICAL-a3684-53ac5511a23a62c976784c5b28b82984595be33358257dcdc576babbd5b6e94d3</cites><orcidid>0000-0002-9015-8973 ; 0000-0002-4727-459X ; 0000-0002-5292-3590 ; 0000-0001-8175-3554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020JF005572$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020JF005572$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,1430,11501,27911,27912,45561,45562,46396,46455,46820,46879</link.rule.ids></links><search><creatorcontrib>Zedel, Len</creatorcontrib><creatorcontrib>Hay, Alex E.</creatorcontrib><creatorcontrib>Wilson, Gregory W.</creatorcontrib><creatorcontrib>Hare, Jenna</creatorcontrib><title>Pulse Coherent Doppler Profiler Measurement of Bedload Transport</title><title>Journal of geophysical research. Earth surface</title><description>Prior studies demonstrate that bottom velocity measurements from Doppler sonar systems are proportional to bedload transport rates. These observations suggest that acoustically based systems offer a capability for rapid sampling of bedload transport processes. Before these measurements can be fully utilized, validation and understanding of the sampling mechanism are essential. We explore the measurement mechanism through a series of laboratory trials with a field instrument, the multi‐frequency coherent Doppler profiler (MFDop). The MFDop system is a multi‐frequency (1.2–2.2 MHz), bistatic Doppler sonar that provides three‐component ensemble‐averaged velocity profiles over a ∼30 cm depth interval with up to 1 mm resolution at a rate of 50 profiles/sec. Tests of the MFDop system were carried out in the main flume in field‐scale conditions at the St. Anthony Falls Laboratory (SAFL) using 1 ms−1 mean flows over a mobile bed of sand with median grain size d50 = 0.4 mm. We find agreement between MFDop transport measurements and measurements based on bedform migration rates, and sediment traps built into the SAFL flume. Predictions using the Meyer‐Peter and Müller (1948) empirical equation closely match our observations while in contrast, predictions using the Nielsen (1992) equation are a factor of two higher. Key Points Field‐scale laboratory trials demonstrate that bedload transport can be measured by bistatic coherent Doppler sonar Acoustic, bedform migration, sediment trap, and Meyer‐Peter &amp; Muller estimates of bedload all agree</description><subject>acoustics</subject><subject>Bed load</subject><subject>Bedforms</subject><subject>bedload transport</subject><subject>coherent Doppler</subject><subject>Doppler sonar</subject><subject>Doppler sonar systems</subject><subject>Empirical equations</subject><subject>Flumes</subject><subject>Grain size</subject><subject>Laboratories</subject><subject>Measurement</subject><subject>Sampling</subject><subject>Sediment transport</subject><subject>Sediment traps</subject><subject>Sedimentary structures</subject><subject>Sonar</subject><subject>Transport processes</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Velocity profiles</subject><issn>2169-9003</issn><issn>2169-9011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kEFLAzEQhYMoWGpv_oAFr64mk51NclNrWy0Vi9RzSHaz2NI2a9JF-u9NqYgn5zKPmY83zCPkktEbRkHdAgU6HVOKKOCE9ICVKleUsdNfTfk5GcS4oqlkGjHokbt5t44uG_oPF9x2lz36tl27kM2Db5YH8eJM7ILbHJa-yR5cvfamzhbBbGPrw-6CnDUmWQx-ep-8j0eL4VM-e508D-9nueGlLHLkpkJkzAA3JVRKlEIWFVqQVoKSBSq0jnOOElDUVV2hKK2xtkZbOlXUvE-ujr5t8J-dizu98l3YppMakCkqUKJI1PWRqoKPMbhGt2G5MWGvGdWHmPTfmBLOj_hX-nX_L6unk7cxMF4U_Bug0Gbr</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Zedel, Len</creator><creator>Hay, Alex E.</creator><creator>Wilson, Gregory W.</creator><creator>Hare, Jenna</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9015-8973</orcidid><orcidid>https://orcid.org/0000-0002-4727-459X</orcidid><orcidid>https://orcid.org/0000-0002-5292-3590</orcidid><orcidid>https://orcid.org/0000-0001-8175-3554</orcidid></search><sort><creationdate>202104</creationdate><title>Pulse Coherent Doppler Profiler Measurement of Bedload Transport</title><author>Zedel, Len ; Hay, Alex E. ; Wilson, Gregory W. ; Hare, Jenna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3684-53ac5511a23a62c976784c5b28b82984595be33358257dcdc576babbd5b6e94d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>acoustics</topic><topic>Bed load</topic><topic>Bedforms</topic><topic>bedload transport</topic><topic>coherent Doppler</topic><topic>Doppler sonar</topic><topic>Doppler sonar systems</topic><topic>Empirical equations</topic><topic>Flumes</topic><topic>Grain size</topic><topic>Laboratories</topic><topic>Measurement</topic><topic>Sampling</topic><topic>Sediment transport</topic><topic>Sediment traps</topic><topic>Sedimentary structures</topic><topic>Sonar</topic><topic>Transport processes</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Velocity profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zedel, Len</creatorcontrib><creatorcontrib>Hay, Alex E.</creatorcontrib><creatorcontrib>Wilson, Gregory W.</creatorcontrib><creatorcontrib>Hare, Jenna</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Earth surface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zedel, Len</au><au>Hay, Alex E.</au><au>Wilson, Gregory W.</au><au>Hare, Jenna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulse Coherent Doppler Profiler Measurement of Bedload Transport</atitle><jtitle>Journal of geophysical research. Earth surface</jtitle><date>2021-04</date><risdate>2021</risdate><volume>126</volume><issue>4</issue><epage>n/a</epage><issn>2169-9003</issn><eissn>2169-9011</eissn><abstract>Prior studies demonstrate that bottom velocity measurements from Doppler sonar systems are proportional to bedload transport rates. These observations suggest that acoustically based systems offer a capability for rapid sampling of bedload transport processes. Before these measurements can be fully utilized, validation and understanding of the sampling mechanism are essential. We explore the measurement mechanism through a series of laboratory trials with a field instrument, the multi‐frequency coherent Doppler profiler (MFDop). The MFDop system is a multi‐frequency (1.2–2.2 MHz), bistatic Doppler sonar that provides three‐component ensemble‐averaged velocity profiles over a ∼30 cm depth interval with up to 1 mm resolution at a rate of 50 profiles/sec. Tests of the MFDop system were carried out in the main flume in field‐scale conditions at the St. Anthony Falls Laboratory (SAFL) using 1 ms−1 mean flows over a mobile bed of sand with median grain size d50 = 0.4 mm. We find agreement between MFDop transport measurements and measurements based on bedform migration rates, and sediment traps built into the SAFL flume. Predictions using the Meyer‐Peter and Müller (1948) empirical equation closely match our observations while in contrast, predictions using the Nielsen (1992) equation are a factor of two higher. Key Points Field‐scale laboratory trials demonstrate that bedload transport can be measured by bistatic coherent Doppler sonar Acoustic, bedform migration, sediment trap, and Meyer‐Peter &amp; Muller estimates of bedload all agree</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2020JF005572</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9015-8973</orcidid><orcidid>https://orcid.org/0000-0002-4727-459X</orcidid><orcidid>https://orcid.org/0000-0002-5292-3590</orcidid><orcidid>https://orcid.org/0000-0001-8175-3554</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9003
ispartof Journal of geophysical research. Earth surface, 2021-04, Vol.126 (4), p.n/a
issn 2169-9003
2169-9011
language eng
recordid cdi_proquest_journals_2519075857
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library
subjects acoustics
Bed load
Bedforms
bedload transport
coherent Doppler
Doppler sonar
Doppler sonar systems
Empirical equations
Flumes
Grain size
Laboratories
Measurement
Sampling
Sediment transport
Sediment traps
Sedimentary structures
Sonar
Transport processes
Velocity
Velocity distribution
Velocity profiles
title Pulse Coherent Doppler Profiler Measurement of Bedload Transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulse%20Coherent%20Doppler%20Profiler%20Measurement%20of%20Bedload%20Transport&rft.jtitle=Journal%20of%20geophysical%20research.%20Earth%20surface&rft.au=Zedel,%20Len&rft.date=2021-04&rft.volume=126&rft.issue=4&rft.epage=n/a&rft.issn=2169-9003&rft.eissn=2169-9011&rft_id=info:doi/10.1029/2020JF005572&rft_dat=%3Cproquest_cross%3E2519075857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519075857&rft_id=info:pmid/&rfr_iscdi=true