Effect of crystallinity on the mechanical behavior of carbon fiber reinforced polyethylene-terephthalate (CF/PET) composites considering temperature conditions
Thermoplastic differs in crystallinity depending on the manufacturing conditions such as temperature and cooling rate, which affect the mechanical properties of the thermoplastic-based composites. In this work, the crystallinity of polyethylene terephthalate (PET) was varied according to the cooling...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2021-05, Vol.207, p.108745, Article 108745 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermoplastic differs in crystallinity depending on the manufacturing conditions such as temperature and cooling rate, which affect the mechanical properties of the thermoplastic-based composites. In this work, the crystallinity of polyethylene terephthalate (PET) was varied according to the cooling rate to investigate the mechanical properties of PET matrix-based carbon fiber (CF)/PET composites. The thermal characteristics and crystallinity were analyzed through the differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. The mechanical behavior of CF/PET composites with different degrees of crystallinity was studied with varied temperature conditions. The failure modes of the fractured CF/PET composites were observed by using a digital microscope and scanning electron microscope (SEM). As a result, the crystallized CF/PET composites were improved 11.6 times higher in in-plane shear (±45° laminated) strength and 3.78 times higher in shear modulus than that of amorphous CF/PET composites at high temperature.
[Display omitted] |
---|---|
ISSN: | 0266-3538 1879-1050 |
DOI: | 10.1016/j.compscitech.2021.108745 |