Highly ordered mesoporous V2O5 nanospheres utilized chemiresistive sensors for selective detection of xylene
[Display omitted] •A template-free solvothermal method demonstrated for hollow V2O5 nanospheres.•Sensor displays good response, repeatability and long-term stability towards xylene.•Superior xylene selectivity against other interfering gases is observed.•The sensing mechanism of V2O5 nanospheres tow...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2021-03, Vol.265, p.115031, Article 115031 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 115031 |
container_title | Materials science & engineering. B, Solid-state materials for advanced technology |
container_volume | 265 |
creator | Cao, PeiJiang Gui, XingGao Pawar, Dnyandeo Han, Shun Xu, WangYing Fang, Ming Liu, XinKe Zeng, YuXiang Liu, WenJun Zhu, DeLiang Lu, YouMing |
description | [Display omitted]
•A template-free solvothermal method demonstrated for hollow V2O5 nanospheres.•Sensor displays good response, repeatability and long-term stability towards xylene.•Superior xylene selectivity against other interfering gases is observed.•The sensing mechanism of V2O5 nanospheres towards xylene is deduced in detail.
This work reports a simple, time efficient, template-free solvothermal and environmentally friendly method for the synthesis of V2O5 nanospheres (NSs) for xylene gas detection. The four types of V2O5-5, V2O5-7, V2O5-9 and V2O5-11 NSs have been synthesized and tested toward xylene in concentration ranging from 1 ppm to 300 ppm. The V2O5-7 sensor exhibits excellent sensing response of 2.75 toward 100 ppm xylene gas within fast response time of 21 s with obtained limit of detection (LOD) of 1 ppm at optimal operating temperature 290 °C. The sensing mechanism is based on an interaction of V2O5 NSs towards xylene through chemical reaction with adsorbed oxygen species present on V2O5 NSs, resulting in a thinner depletion layer and a lower potential barrier which further leads to decrease in sensor resistance. These experimental results suggest that the V2O5 NSs based sensors have potential to fulfill the demands in the gas sensing field. |
doi_str_mv | 10.1016/j.mseb.2020.115031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519040144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921510720305389</els_id><sourcerecordid>2519040144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-88cbf995f98f85de83ed4953ea7d3157b4f1ab8b347a5f21fab57b83234225543</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz13zaVPwIou6wsJe1Gvox8RNaZuatIvrrze1nj3N8M77zgwPQteUrCihd7f1qg1QrBhhUaCScHqCFlSlPBGZEKdoQTJGE0lJeo4uQqgJIZQxtkDNxn7smyN2vgIPFW4huN55Nwb8znYSd3nnQr-Ps4DHwTb2O5rKPbQ2KjYM9gA4QBecD9g4H_sGyl-1gmHqXIedwV_HBjq4RGcmbwJc_dUlent6fF1vku3u-WX9sE1KztSQKFUWJsukyZRRsgLFoRKZ5JCnFacyLYSheaEKLtJcGkZNXkRRccYFY1IKvkQ3897eu88RwqBrN_ountRM0owIQsXkYrOr9C4ED0b33ra5P2pK9ERV13qiqieqeqYaQ_dzCOL_Bwteh9JCV0IVgZSDrpz9L_4DxL6CDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519040144</pqid></control><display><type>article</type><title>Highly ordered mesoporous V2O5 nanospheres utilized chemiresistive sensors for selective detection of xylene</title><source>Elsevier ScienceDirect Journals</source><creator>Cao, PeiJiang ; Gui, XingGao ; Pawar, Dnyandeo ; Han, Shun ; Xu, WangYing ; Fang, Ming ; Liu, XinKe ; Zeng, YuXiang ; Liu, WenJun ; Zhu, DeLiang ; Lu, YouMing</creator><creatorcontrib>Cao, PeiJiang ; Gui, XingGao ; Pawar, Dnyandeo ; Han, Shun ; Xu, WangYing ; Fang, Ming ; Liu, XinKe ; Zeng, YuXiang ; Liu, WenJun ; Zhu, DeLiang ; Lu, YouMing</creatorcontrib><description>[Display omitted]
•A template-free solvothermal method demonstrated for hollow V2O5 nanospheres.•Sensor displays good response, repeatability and long-term stability towards xylene.•Superior xylene selectivity against other interfering gases is observed.•The sensing mechanism of V2O5 nanospheres towards xylene is deduced in detail.
This work reports a simple, time efficient, template-free solvothermal and environmentally friendly method for the synthesis of V2O5 nanospheres (NSs) for xylene gas detection. The four types of V2O5-5, V2O5-7, V2O5-9 and V2O5-11 NSs have been synthesized and tested toward xylene in concentration ranging from 1 ppm to 300 ppm. The V2O5-7 sensor exhibits excellent sensing response of 2.75 toward 100 ppm xylene gas within fast response time of 21 s with obtained limit of detection (LOD) of 1 ppm at optimal operating temperature 290 °C. The sensing mechanism is based on an interaction of V2O5 NSs towards xylene through chemical reaction with adsorbed oxygen species present on V2O5 NSs, resulting in a thinner depletion layer and a lower potential barrier which further leads to decrease in sensor resistance. These experimental results suggest that the V2O5 NSs based sensors have potential to fulfill the demands in the gas sensing field.</description><identifier>ISSN: 0921-5107</identifier><identifier>EISSN: 1873-4944</identifier><identifier>DOI: 10.1016/j.mseb.2020.115031</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Chemical reactions ; Depletion ; Gas sensor ; Gas sensors ; Mesoporous ; Nanospheres ; Operating temperature ; Potential barriers ; Response time ; Sensors ; Solvothermal method ; V2O5 nanospheres ; Vanadium pentoxide ; Xylene</subject><ispartof>Materials science & engineering. B, Solid-state materials for advanced technology, 2021-03, Vol.265, p.115031, Article 115031</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-88cbf995f98f85de83ed4953ea7d3157b4f1ab8b347a5f21fab57b83234225543</citedby><cites>FETCH-LOGICAL-c328t-88cbf995f98f85de83ed4953ea7d3157b4f1ab8b347a5f21fab57b83234225543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921510720305389$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cao, PeiJiang</creatorcontrib><creatorcontrib>Gui, XingGao</creatorcontrib><creatorcontrib>Pawar, Dnyandeo</creatorcontrib><creatorcontrib>Han, Shun</creatorcontrib><creatorcontrib>Xu, WangYing</creatorcontrib><creatorcontrib>Fang, Ming</creatorcontrib><creatorcontrib>Liu, XinKe</creatorcontrib><creatorcontrib>Zeng, YuXiang</creatorcontrib><creatorcontrib>Liu, WenJun</creatorcontrib><creatorcontrib>Zhu, DeLiang</creatorcontrib><creatorcontrib>Lu, YouMing</creatorcontrib><title>Highly ordered mesoporous V2O5 nanospheres utilized chemiresistive sensors for selective detection of xylene</title><title>Materials science & engineering. B, Solid-state materials for advanced technology</title><description>[Display omitted]
•A template-free solvothermal method demonstrated for hollow V2O5 nanospheres.•Sensor displays good response, repeatability and long-term stability towards xylene.•Superior xylene selectivity against other interfering gases is observed.•The sensing mechanism of V2O5 nanospheres towards xylene is deduced in detail.
This work reports a simple, time efficient, template-free solvothermal and environmentally friendly method for the synthesis of V2O5 nanospheres (NSs) for xylene gas detection. The four types of V2O5-5, V2O5-7, V2O5-9 and V2O5-11 NSs have been synthesized and tested toward xylene in concentration ranging from 1 ppm to 300 ppm. The V2O5-7 sensor exhibits excellent sensing response of 2.75 toward 100 ppm xylene gas within fast response time of 21 s with obtained limit of detection (LOD) of 1 ppm at optimal operating temperature 290 °C. The sensing mechanism is based on an interaction of V2O5 NSs towards xylene through chemical reaction with adsorbed oxygen species present on V2O5 NSs, resulting in a thinner depletion layer and a lower potential barrier which further leads to decrease in sensor resistance. These experimental results suggest that the V2O5 NSs based sensors have potential to fulfill the demands in the gas sensing field.</description><subject>Chemical reactions</subject><subject>Depletion</subject><subject>Gas sensor</subject><subject>Gas sensors</subject><subject>Mesoporous</subject><subject>Nanospheres</subject><subject>Operating temperature</subject><subject>Potential barriers</subject><subject>Response time</subject><subject>Sensors</subject><subject>Solvothermal method</subject><subject>V2O5 nanospheres</subject><subject>Vanadium pentoxide</subject><subject>Xylene</subject><issn>0921-5107</issn><issn>1873-4944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz13zaVPwIou6wsJe1Gvox8RNaZuatIvrrze1nj3N8M77zgwPQteUrCihd7f1qg1QrBhhUaCScHqCFlSlPBGZEKdoQTJGE0lJeo4uQqgJIZQxtkDNxn7smyN2vgIPFW4huN55Nwb8znYSd3nnQr-Ps4DHwTb2O5rKPbQ2KjYM9gA4QBecD9g4H_sGyl-1gmHqXIedwV_HBjq4RGcmbwJc_dUlent6fF1vku3u-WX9sE1KztSQKFUWJsukyZRRsgLFoRKZ5JCnFacyLYSheaEKLtJcGkZNXkRRccYFY1IKvkQ3897eu88RwqBrN_ountRM0owIQsXkYrOr9C4ED0b33ra5P2pK9ERV13qiqieqeqYaQ_dzCOL_Bwteh9JCV0IVgZSDrpz9L_4DxL6CDQ</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Cao, PeiJiang</creator><creator>Gui, XingGao</creator><creator>Pawar, Dnyandeo</creator><creator>Han, Shun</creator><creator>Xu, WangYing</creator><creator>Fang, Ming</creator><creator>Liu, XinKe</creator><creator>Zeng, YuXiang</creator><creator>Liu, WenJun</creator><creator>Zhu, DeLiang</creator><creator>Lu, YouMing</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202103</creationdate><title>Highly ordered mesoporous V2O5 nanospheres utilized chemiresistive sensors for selective detection of xylene</title><author>Cao, PeiJiang ; Gui, XingGao ; Pawar, Dnyandeo ; Han, Shun ; Xu, WangYing ; Fang, Ming ; Liu, XinKe ; Zeng, YuXiang ; Liu, WenJun ; Zhu, DeLiang ; Lu, YouMing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-88cbf995f98f85de83ed4953ea7d3157b4f1ab8b347a5f21fab57b83234225543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical reactions</topic><topic>Depletion</topic><topic>Gas sensor</topic><topic>Gas sensors</topic><topic>Mesoporous</topic><topic>Nanospheres</topic><topic>Operating temperature</topic><topic>Potential barriers</topic><topic>Response time</topic><topic>Sensors</topic><topic>Solvothermal method</topic><topic>V2O5 nanospheres</topic><topic>Vanadium pentoxide</topic><topic>Xylene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, PeiJiang</creatorcontrib><creatorcontrib>Gui, XingGao</creatorcontrib><creatorcontrib>Pawar, Dnyandeo</creatorcontrib><creatorcontrib>Han, Shun</creatorcontrib><creatorcontrib>Xu, WangYing</creatorcontrib><creatorcontrib>Fang, Ming</creatorcontrib><creatorcontrib>Liu, XinKe</creatorcontrib><creatorcontrib>Zeng, YuXiang</creatorcontrib><creatorcontrib>Liu, WenJun</creatorcontrib><creatorcontrib>Zhu, DeLiang</creatorcontrib><creatorcontrib>Lu, YouMing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science & engineering. B, Solid-state materials for advanced technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, PeiJiang</au><au>Gui, XingGao</au><au>Pawar, Dnyandeo</au><au>Han, Shun</au><au>Xu, WangYing</au><au>Fang, Ming</au><au>Liu, XinKe</au><au>Zeng, YuXiang</au><au>Liu, WenJun</au><au>Zhu, DeLiang</au><au>Lu, YouMing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly ordered mesoporous V2O5 nanospheres utilized chemiresistive sensors for selective detection of xylene</atitle><jtitle>Materials science & engineering. B, Solid-state materials for advanced technology</jtitle><date>2021-03</date><risdate>2021</risdate><volume>265</volume><spage>115031</spage><pages>115031-</pages><artnum>115031</artnum><issn>0921-5107</issn><eissn>1873-4944</eissn><abstract>[Display omitted]
•A template-free solvothermal method demonstrated for hollow V2O5 nanospheres.•Sensor displays good response, repeatability and long-term stability towards xylene.•Superior xylene selectivity against other interfering gases is observed.•The sensing mechanism of V2O5 nanospheres towards xylene is deduced in detail.
This work reports a simple, time efficient, template-free solvothermal and environmentally friendly method for the synthesis of V2O5 nanospheres (NSs) for xylene gas detection. The four types of V2O5-5, V2O5-7, V2O5-9 and V2O5-11 NSs have been synthesized and tested toward xylene in concentration ranging from 1 ppm to 300 ppm. The V2O5-7 sensor exhibits excellent sensing response of 2.75 toward 100 ppm xylene gas within fast response time of 21 s with obtained limit of detection (LOD) of 1 ppm at optimal operating temperature 290 °C. The sensing mechanism is based on an interaction of V2O5 NSs towards xylene through chemical reaction with adsorbed oxygen species present on V2O5 NSs, resulting in a thinner depletion layer and a lower potential barrier which further leads to decrease in sensor resistance. These experimental results suggest that the V2O5 NSs based sensors have potential to fulfill the demands in the gas sensing field.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mseb.2020.115031</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5107 |
ispartof | Materials science & engineering. B, Solid-state materials for advanced technology, 2021-03, Vol.265, p.115031, Article 115031 |
issn | 0921-5107 1873-4944 |
language | eng |
recordid | cdi_proquest_journals_2519040144 |
source | Elsevier ScienceDirect Journals |
subjects | Chemical reactions Depletion Gas sensor Gas sensors Mesoporous Nanospheres Operating temperature Potential barriers Response time Sensors Solvothermal method V2O5 nanospheres Vanadium pentoxide Xylene |
title | Highly ordered mesoporous V2O5 nanospheres utilized chemiresistive sensors for selective detection of xylene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20ordered%20mesoporous%20V2O5%20nanospheres%20utilized%20chemiresistive%20sensors%20for%20selective%20detection%20of%20xylene&rft.jtitle=Materials%20science%20&%20engineering.%20B,%20Solid-state%20materials%20for%20advanced%20technology&rft.au=Cao,%20PeiJiang&rft.date=2021-03&rft.volume=265&rft.spage=115031&rft.pages=115031-&rft.artnum=115031&rft.issn=0921-5107&rft.eissn=1873-4944&rft_id=info:doi/10.1016/j.mseb.2020.115031&rft_dat=%3Cproquest_cross%3E2519040144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519040144&rft_id=info:pmid/&rft_els_id=S0921510720305389&rfr_iscdi=true |