Highly ordered mesoporous V2O5 nanospheres utilized chemiresistive sensors for selective detection of xylene

[Display omitted] •A template-free solvothermal method demonstrated for hollow V2O5 nanospheres.•Sensor displays good response, repeatability and long-term stability towards xylene.•Superior xylene selectivity against other interfering gases is observed.•The sensing mechanism of V2O5 nanospheres tow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2021-03, Vol.265, p.115031, Article 115031
Hauptverfasser: Cao, PeiJiang, Gui, XingGao, Pawar, Dnyandeo, Han, Shun, Xu, WangYing, Fang, Ming, Liu, XinKe, Zeng, YuXiang, Liu, WenJun, Zhu, DeLiang, Lu, YouMing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115031
container_title Materials science & engineering. B, Solid-state materials for advanced technology
container_volume 265
creator Cao, PeiJiang
Gui, XingGao
Pawar, Dnyandeo
Han, Shun
Xu, WangYing
Fang, Ming
Liu, XinKe
Zeng, YuXiang
Liu, WenJun
Zhu, DeLiang
Lu, YouMing
description [Display omitted] •A template-free solvothermal method demonstrated for hollow V2O5 nanospheres.•Sensor displays good response, repeatability and long-term stability towards xylene.•Superior xylene selectivity against other interfering gases is observed.•The sensing mechanism of V2O5 nanospheres towards xylene is deduced in detail. This work reports a simple, time efficient, template-free solvothermal and environmentally friendly method for the synthesis of V2O5 nanospheres (NSs) for xylene gas detection. The four types of V2O5-5, V2O5-7, V2O5-9 and V2O5-11 NSs have been synthesized and tested toward xylene in concentration ranging from 1 ppm to 300 ppm. The V2O5-7 sensor exhibits excellent sensing response of 2.75 toward 100 ppm xylene gas within fast response time of 21 s with obtained limit of detection (LOD) of 1 ppm at optimal operating temperature 290 °C. The sensing mechanism is based on an interaction of V2O5 NSs towards xylene through chemical reaction with adsorbed oxygen species present on V2O5 NSs, resulting in a thinner depletion layer and a lower potential barrier which further leads to decrease in sensor resistance. These experimental results suggest that the V2O5 NSs based sensors have potential to fulfill the demands in the gas sensing field.
doi_str_mv 10.1016/j.mseb.2020.115031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519040144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921510720305389</els_id><sourcerecordid>2519040144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-88cbf995f98f85de83ed4953ea7d3157b4f1ab8b347a5f21fab57b83234225543</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz13zaVPwIou6wsJe1Gvox8RNaZuatIvrrze1nj3N8M77zgwPQteUrCihd7f1qg1QrBhhUaCScHqCFlSlPBGZEKdoQTJGE0lJeo4uQqgJIZQxtkDNxn7smyN2vgIPFW4huN55Nwb8znYSd3nnQr-Ps4DHwTb2O5rKPbQ2KjYM9gA4QBecD9g4H_sGyl-1gmHqXIedwV_HBjq4RGcmbwJc_dUlent6fF1vku3u-WX9sE1KztSQKFUWJsukyZRRsgLFoRKZ5JCnFacyLYSheaEKLtJcGkZNXkRRccYFY1IKvkQ3897eu88RwqBrN_ountRM0owIQsXkYrOr9C4ED0b33ra5P2pK9ERV13qiqieqeqYaQ_dzCOL_Bwteh9JCV0IVgZSDrpz9L_4DxL6CDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519040144</pqid></control><display><type>article</type><title>Highly ordered mesoporous V2O5 nanospheres utilized chemiresistive sensors for selective detection of xylene</title><source>Elsevier ScienceDirect Journals</source><creator>Cao, PeiJiang ; Gui, XingGao ; Pawar, Dnyandeo ; Han, Shun ; Xu, WangYing ; Fang, Ming ; Liu, XinKe ; Zeng, YuXiang ; Liu, WenJun ; Zhu, DeLiang ; Lu, YouMing</creator><creatorcontrib>Cao, PeiJiang ; Gui, XingGao ; Pawar, Dnyandeo ; Han, Shun ; Xu, WangYing ; Fang, Ming ; Liu, XinKe ; Zeng, YuXiang ; Liu, WenJun ; Zhu, DeLiang ; Lu, YouMing</creatorcontrib><description>[Display omitted] •A template-free solvothermal method demonstrated for hollow V2O5 nanospheres.•Sensor displays good response, repeatability and long-term stability towards xylene.•Superior xylene selectivity against other interfering gases is observed.•The sensing mechanism of V2O5 nanospheres towards xylene is deduced in detail. This work reports a simple, time efficient, template-free solvothermal and environmentally friendly method for the synthesis of V2O5 nanospheres (NSs) for xylene gas detection. The four types of V2O5-5, V2O5-7, V2O5-9 and V2O5-11 NSs have been synthesized and tested toward xylene in concentration ranging from 1 ppm to 300 ppm. The V2O5-7 sensor exhibits excellent sensing response of 2.75 toward 100 ppm xylene gas within fast response time of 21 s with obtained limit of detection (LOD) of 1 ppm at optimal operating temperature 290 °C. The sensing mechanism is based on an interaction of V2O5 NSs towards xylene through chemical reaction with adsorbed oxygen species present on V2O5 NSs, resulting in a thinner depletion layer and a lower potential barrier which further leads to decrease in sensor resistance. These experimental results suggest that the V2O5 NSs based sensors have potential to fulfill the demands in the gas sensing field.</description><identifier>ISSN: 0921-5107</identifier><identifier>EISSN: 1873-4944</identifier><identifier>DOI: 10.1016/j.mseb.2020.115031</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Chemical reactions ; Depletion ; Gas sensor ; Gas sensors ; Mesoporous ; Nanospheres ; Operating temperature ; Potential barriers ; Response time ; Sensors ; Solvothermal method ; V2O5 nanospheres ; Vanadium pentoxide ; Xylene</subject><ispartof>Materials science &amp; engineering. B, Solid-state materials for advanced technology, 2021-03, Vol.265, p.115031, Article 115031</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-88cbf995f98f85de83ed4953ea7d3157b4f1ab8b347a5f21fab57b83234225543</citedby><cites>FETCH-LOGICAL-c328t-88cbf995f98f85de83ed4953ea7d3157b4f1ab8b347a5f21fab57b83234225543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921510720305389$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cao, PeiJiang</creatorcontrib><creatorcontrib>Gui, XingGao</creatorcontrib><creatorcontrib>Pawar, Dnyandeo</creatorcontrib><creatorcontrib>Han, Shun</creatorcontrib><creatorcontrib>Xu, WangYing</creatorcontrib><creatorcontrib>Fang, Ming</creatorcontrib><creatorcontrib>Liu, XinKe</creatorcontrib><creatorcontrib>Zeng, YuXiang</creatorcontrib><creatorcontrib>Liu, WenJun</creatorcontrib><creatorcontrib>Zhu, DeLiang</creatorcontrib><creatorcontrib>Lu, YouMing</creatorcontrib><title>Highly ordered mesoporous V2O5 nanospheres utilized chemiresistive sensors for selective detection of xylene</title><title>Materials science &amp; engineering. B, Solid-state materials for advanced technology</title><description>[Display omitted] •A template-free solvothermal method demonstrated for hollow V2O5 nanospheres.•Sensor displays good response, repeatability and long-term stability towards xylene.•Superior xylene selectivity against other interfering gases is observed.•The sensing mechanism of V2O5 nanospheres towards xylene is deduced in detail. This work reports a simple, time efficient, template-free solvothermal and environmentally friendly method for the synthesis of V2O5 nanospheres (NSs) for xylene gas detection. The four types of V2O5-5, V2O5-7, V2O5-9 and V2O5-11 NSs have been synthesized and tested toward xylene in concentration ranging from 1 ppm to 300 ppm. The V2O5-7 sensor exhibits excellent sensing response of 2.75 toward 100 ppm xylene gas within fast response time of 21 s with obtained limit of detection (LOD) of 1 ppm at optimal operating temperature 290 °C. The sensing mechanism is based on an interaction of V2O5 NSs towards xylene through chemical reaction with adsorbed oxygen species present on V2O5 NSs, resulting in a thinner depletion layer and a lower potential barrier which further leads to decrease in sensor resistance. These experimental results suggest that the V2O5 NSs based sensors have potential to fulfill the demands in the gas sensing field.</description><subject>Chemical reactions</subject><subject>Depletion</subject><subject>Gas sensor</subject><subject>Gas sensors</subject><subject>Mesoporous</subject><subject>Nanospheres</subject><subject>Operating temperature</subject><subject>Potential barriers</subject><subject>Response time</subject><subject>Sensors</subject><subject>Solvothermal method</subject><subject>V2O5 nanospheres</subject><subject>Vanadium pentoxide</subject><subject>Xylene</subject><issn>0921-5107</issn><issn>1873-4944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz13zaVPwIou6wsJe1Gvox8RNaZuatIvrrze1nj3N8M77zgwPQteUrCihd7f1qg1QrBhhUaCScHqCFlSlPBGZEKdoQTJGE0lJeo4uQqgJIZQxtkDNxn7smyN2vgIPFW4huN55Nwb8znYSd3nnQr-Ps4DHwTb2O5rKPbQ2KjYM9gA4QBecD9g4H_sGyl-1gmHqXIedwV_HBjq4RGcmbwJc_dUlent6fF1vku3u-WX9sE1KztSQKFUWJsukyZRRsgLFoRKZ5JCnFacyLYSheaEKLtJcGkZNXkRRccYFY1IKvkQ3897eu88RwqBrN_ountRM0owIQsXkYrOr9C4ED0b33ra5P2pK9ERV13qiqieqeqYaQ_dzCOL_Bwteh9JCV0IVgZSDrpz9L_4DxL6CDQ</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Cao, PeiJiang</creator><creator>Gui, XingGao</creator><creator>Pawar, Dnyandeo</creator><creator>Han, Shun</creator><creator>Xu, WangYing</creator><creator>Fang, Ming</creator><creator>Liu, XinKe</creator><creator>Zeng, YuXiang</creator><creator>Liu, WenJun</creator><creator>Zhu, DeLiang</creator><creator>Lu, YouMing</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202103</creationdate><title>Highly ordered mesoporous V2O5 nanospheres utilized chemiresistive sensors for selective detection of xylene</title><author>Cao, PeiJiang ; Gui, XingGao ; Pawar, Dnyandeo ; Han, Shun ; Xu, WangYing ; Fang, Ming ; Liu, XinKe ; Zeng, YuXiang ; Liu, WenJun ; Zhu, DeLiang ; Lu, YouMing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-88cbf995f98f85de83ed4953ea7d3157b4f1ab8b347a5f21fab57b83234225543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical reactions</topic><topic>Depletion</topic><topic>Gas sensor</topic><topic>Gas sensors</topic><topic>Mesoporous</topic><topic>Nanospheres</topic><topic>Operating temperature</topic><topic>Potential barriers</topic><topic>Response time</topic><topic>Sensors</topic><topic>Solvothermal method</topic><topic>V2O5 nanospheres</topic><topic>Vanadium pentoxide</topic><topic>Xylene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, PeiJiang</creatorcontrib><creatorcontrib>Gui, XingGao</creatorcontrib><creatorcontrib>Pawar, Dnyandeo</creatorcontrib><creatorcontrib>Han, Shun</creatorcontrib><creatorcontrib>Xu, WangYing</creatorcontrib><creatorcontrib>Fang, Ming</creatorcontrib><creatorcontrib>Liu, XinKe</creatorcontrib><creatorcontrib>Zeng, YuXiang</creatorcontrib><creatorcontrib>Liu, WenJun</creatorcontrib><creatorcontrib>Zhu, DeLiang</creatorcontrib><creatorcontrib>Lu, YouMing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, PeiJiang</au><au>Gui, XingGao</au><au>Pawar, Dnyandeo</au><au>Han, Shun</au><au>Xu, WangYing</au><au>Fang, Ming</au><au>Liu, XinKe</au><au>Zeng, YuXiang</au><au>Liu, WenJun</au><au>Zhu, DeLiang</au><au>Lu, YouMing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly ordered mesoporous V2O5 nanospheres utilized chemiresistive sensors for selective detection of xylene</atitle><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle><date>2021-03</date><risdate>2021</risdate><volume>265</volume><spage>115031</spage><pages>115031-</pages><artnum>115031</artnum><issn>0921-5107</issn><eissn>1873-4944</eissn><abstract>[Display omitted] •A template-free solvothermal method demonstrated for hollow V2O5 nanospheres.•Sensor displays good response, repeatability and long-term stability towards xylene.•Superior xylene selectivity against other interfering gases is observed.•The sensing mechanism of V2O5 nanospheres towards xylene is deduced in detail. This work reports a simple, time efficient, template-free solvothermal and environmentally friendly method for the synthesis of V2O5 nanospheres (NSs) for xylene gas detection. The four types of V2O5-5, V2O5-7, V2O5-9 and V2O5-11 NSs have been synthesized and tested toward xylene in concentration ranging from 1 ppm to 300 ppm. The V2O5-7 sensor exhibits excellent sensing response of 2.75 toward 100 ppm xylene gas within fast response time of 21 s with obtained limit of detection (LOD) of 1 ppm at optimal operating temperature 290 °C. The sensing mechanism is based on an interaction of V2O5 NSs towards xylene through chemical reaction with adsorbed oxygen species present on V2O5 NSs, resulting in a thinner depletion layer and a lower potential barrier which further leads to decrease in sensor resistance. These experimental results suggest that the V2O5 NSs based sensors have potential to fulfill the demands in the gas sensing field.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mseb.2020.115031</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5107
ispartof Materials science & engineering. B, Solid-state materials for advanced technology, 2021-03, Vol.265, p.115031, Article 115031
issn 0921-5107
1873-4944
language eng
recordid cdi_proquest_journals_2519040144
source Elsevier ScienceDirect Journals
subjects Chemical reactions
Depletion
Gas sensor
Gas sensors
Mesoporous
Nanospheres
Operating temperature
Potential barriers
Response time
Sensors
Solvothermal method
V2O5 nanospheres
Vanadium pentoxide
Xylene
title Highly ordered mesoporous V2O5 nanospheres utilized chemiresistive sensors for selective detection of xylene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20ordered%20mesoporous%20V2O5%20nanospheres%20utilized%20chemiresistive%20sensors%20for%20selective%20detection%20of%20xylene&rft.jtitle=Materials%20science%20&%20engineering.%20B,%20Solid-state%20materials%20for%20advanced%20technology&rft.au=Cao,%20PeiJiang&rft.date=2021-03&rft.volume=265&rft.spage=115031&rft.pages=115031-&rft.artnum=115031&rft.issn=0921-5107&rft.eissn=1873-4944&rft_id=info:doi/10.1016/j.mseb.2020.115031&rft_dat=%3Cproquest_cross%3E2519040144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519040144&rft_id=info:pmid/&rft_els_id=S0921510720305389&rfr_iscdi=true