The influence of Mn doping on the structural and optical properties of ZnO nanostructures
We report the hydrothermal synthesis of Zn1-xMnxO (x = 0.00, 0.02, 0.04, 0.06) nanostructures and their structural, morphological and optical properties. The X-ray diffraction analysis confirmed the wurtzite phase and successful incorporation of Mn in ZnO matrix. Field emission scanning electron mic...
Gespeichert in:
Veröffentlicht in: | Physica. B, Condensed matter Condensed matter, 2021-03, Vol.604, p.412731, Article 412731 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 412731 |
container_title | Physica. B, Condensed matter |
container_volume | 604 |
creator | Toufiq, Arbab Mohammad Hussain, Rafaqat Shah, A. Mahmood, Arshad Rehman, Asmat Khan, Amjad Rahman, Shams ur |
description | We report the hydrothermal synthesis of Zn1-xMnxO (x = 0.00, 0.02, 0.04, 0.06) nanostructures and their structural, morphological and optical properties. The X-ray diffraction analysis confirmed the wurtzite phase and successful incorporation of Mn in ZnO matrix. Field emission scanning electron microscopy (FE-SEM) images revealed the suppression of growth rate and change in morphology of ZnO from nanoplates to nanorods at higher Mn concentration. Furthermore, a red shift is observed in the Fourier transform infra-red (FTIR) spectra, which is attributed to the variation of bond length and Zn–O–Zn structural perturbation. UV–visible absorption measurements indicated a blue shift in the bandgap from 3.28 eV (pure ZnO) to 3.42 eV (x = 0.06), which is assigned to the Burstein-Moss effect. The photoluminescence spectra exhibited UV excitonic and yellow-green defective emissions. The intensity of broad visible emission peak is decreased which is ascribed to the surface defect quenching due to the presence of Mn as a dopant.
•Morphology-controlled synthesis of wurtzite Zn1-xMnxO nanoarchitectures (x = 0.00, 0.02, 0.04, and 0.06) is reported.•The transformation from nanoplates to nanorod-type morphology is observed with the addition of Mn in ZnO lattice.•The enhancement in band gap energies is observed with the increase in Mn concentration ascribed to Burstein–Moss effect.•The increase in Mn concentration results in quenching of the PL intensity due to non-radiative recombination centers. |
doi_str_mv | 10.1016/j.physb.2020.412731 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519039353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452620307109</els_id><sourcerecordid>2519039353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-b8614be6b77ab854dda9d84bef81a686bb0e47c054da545ee1e579d6280fba7f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1gsMSfYcRInAwOq-JKKupQBFsuxL9RRsYOdIPXf4xBY8XLW3fvex4PQJSUpJbS87tJ-dwhNmpGMpDnNOKNHaEErzpKMsuIYLUid0SQvsvIUnYXQkfgopwv0ut0BNrbdj2AVYNfiZ4u16419x87iIVbD4Ec1jF7usbQau34wKv5773rwg4Ewud7sBltp3Z8Ywjk6aeU-wMVvXKKX-7vt6jFZbx6eVrfrRDFGh6SpSpo3UDacy6Yqcq1lrauYaSsqy6psGgI5VyRWZJEXABQKXusyq0jbSN6yJbqa-8aFPkcIg-jc6G0cKbKC1oTVrGBRxWaV8i4ED63ovfmQ_iAoERND0YkfhmJiKGaG0XUzuyAe8GXAi6DMBEobD2oQ2pl__d8OXXx0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519039353</pqid></control><display><type>article</type><title>The influence of Mn doping on the structural and optical properties of ZnO nanostructures</title><source>Access via ScienceDirect (Elsevier)</source><creator>Toufiq, Arbab Mohammad ; Hussain, Rafaqat ; Shah, A. ; Mahmood, Arshad ; Rehman, Asmat ; Khan, Amjad ; Rahman, Shams ur</creator><creatorcontrib>Toufiq, Arbab Mohammad ; Hussain, Rafaqat ; Shah, A. ; Mahmood, Arshad ; Rehman, Asmat ; Khan, Amjad ; Rahman, Shams ur</creatorcontrib><description>We report the hydrothermal synthesis of Zn1-xMnxO (x = 0.00, 0.02, 0.04, 0.06) nanostructures and their structural, morphological and optical properties. The X-ray diffraction analysis confirmed the wurtzite phase and successful incorporation of Mn in ZnO matrix. Field emission scanning electron microscopy (FE-SEM) images revealed the suppression of growth rate and change in morphology of ZnO from nanoplates to nanorods at higher Mn concentration. Furthermore, a red shift is observed in the Fourier transform infra-red (FTIR) spectra, which is attributed to the variation of bond length and Zn–O–Zn structural perturbation. UV–visible absorption measurements indicated a blue shift in the bandgap from 3.28 eV (pure ZnO) to 3.42 eV (x = 0.06), which is assigned to the Burstein-Moss effect. The photoluminescence spectra exhibited UV excitonic and yellow-green defective emissions. The intensity of broad visible emission peak is decreased which is ascribed to the surface defect quenching due to the presence of Mn as a dopant.
•Morphology-controlled synthesis of wurtzite Zn1-xMnxO nanoarchitectures (x = 0.00, 0.02, 0.04, and 0.06) is reported.•The transformation from nanoplates to nanorod-type morphology is observed with the addition of Mn in ZnO lattice.•The enhancement in band gap energies is observed with the increase in Mn concentration ascribed to Burstein–Moss effect.•The increase in Mn concentration results in quenching of the PL intensity due to non-radiative recombination centers.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2020.412731</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Blue shift ; Defect states ; Diffraction ; Doppler effect ; Excitation spectra ; Field emission microscopy ; Fourier transforms ; Mn doped ZnO ; Morphology ; Nanoplates ; Nanorods ; Nanostructure ; Optical properties ; Oxygen vacancies ; Perturbation ; Photoluminescence ; Red shift ; Scanning electron microscopy ; Studies ; Surface defects ; Wurtzite ; Zinc oxide ; Zinc oxides</subject><ispartof>Physica. B, Condensed matter, 2021-03, Vol.604, p.412731, Article 412731</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-b8614be6b77ab854dda9d84bef81a686bb0e47c054da545ee1e579d6280fba7f3</citedby><cites>FETCH-LOGICAL-c331t-b8614be6b77ab854dda9d84bef81a686bb0e47c054da545ee1e579d6280fba7f3</cites><orcidid>0000-0002-2533-8847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physb.2020.412731$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Toufiq, Arbab Mohammad</creatorcontrib><creatorcontrib>Hussain, Rafaqat</creatorcontrib><creatorcontrib>Shah, A.</creatorcontrib><creatorcontrib>Mahmood, Arshad</creatorcontrib><creatorcontrib>Rehman, Asmat</creatorcontrib><creatorcontrib>Khan, Amjad</creatorcontrib><creatorcontrib>Rahman, Shams ur</creatorcontrib><title>The influence of Mn doping on the structural and optical properties of ZnO nanostructures</title><title>Physica. B, Condensed matter</title><description>We report the hydrothermal synthesis of Zn1-xMnxO (x = 0.00, 0.02, 0.04, 0.06) nanostructures and their structural, morphological and optical properties. The X-ray diffraction analysis confirmed the wurtzite phase and successful incorporation of Mn in ZnO matrix. Field emission scanning electron microscopy (FE-SEM) images revealed the suppression of growth rate and change in morphology of ZnO from nanoplates to nanorods at higher Mn concentration. Furthermore, a red shift is observed in the Fourier transform infra-red (FTIR) spectra, which is attributed to the variation of bond length and Zn–O–Zn structural perturbation. UV–visible absorption measurements indicated a blue shift in the bandgap from 3.28 eV (pure ZnO) to 3.42 eV (x = 0.06), which is assigned to the Burstein-Moss effect. The photoluminescence spectra exhibited UV excitonic and yellow-green defective emissions. The intensity of broad visible emission peak is decreased which is ascribed to the surface defect quenching due to the presence of Mn as a dopant.
•Morphology-controlled synthesis of wurtzite Zn1-xMnxO nanoarchitectures (x = 0.00, 0.02, 0.04, and 0.06) is reported.•The transformation from nanoplates to nanorod-type morphology is observed with the addition of Mn in ZnO lattice.•The enhancement in band gap energies is observed with the increase in Mn concentration ascribed to Burstein–Moss effect.•The increase in Mn concentration results in quenching of the PL intensity due to non-radiative recombination centers.</description><subject>Blue shift</subject><subject>Defect states</subject><subject>Diffraction</subject><subject>Doppler effect</subject><subject>Excitation spectra</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>Mn doped ZnO</subject><subject>Morphology</subject><subject>Nanoplates</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Optical properties</subject><subject>Oxygen vacancies</subject><subject>Perturbation</subject><subject>Photoluminescence</subject><subject>Red shift</subject><subject>Scanning electron microscopy</subject><subject>Studies</subject><subject>Surface defects</subject><subject>Wurtzite</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1gsMSfYcRInAwOq-JKKupQBFsuxL9RRsYOdIPXf4xBY8XLW3fvex4PQJSUpJbS87tJ-dwhNmpGMpDnNOKNHaEErzpKMsuIYLUid0SQvsvIUnYXQkfgopwv0ut0BNrbdj2AVYNfiZ4u16419x87iIVbD4Ec1jF7usbQau34wKv5773rwg4Ewud7sBltp3Z8Ywjk6aeU-wMVvXKKX-7vt6jFZbx6eVrfrRDFGh6SpSpo3UDacy6Yqcq1lrauYaSsqy6psGgI5VyRWZJEXABQKXusyq0jbSN6yJbqa-8aFPkcIg-jc6G0cKbKC1oTVrGBRxWaV8i4ED63ovfmQ_iAoERND0YkfhmJiKGaG0XUzuyAe8GXAi6DMBEobD2oQ2pl__d8OXXx0</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Toufiq, Arbab Mohammad</creator><creator>Hussain, Rafaqat</creator><creator>Shah, A.</creator><creator>Mahmood, Arshad</creator><creator>Rehman, Asmat</creator><creator>Khan, Amjad</creator><creator>Rahman, Shams ur</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2533-8847</orcidid></search><sort><creationdate>20210301</creationdate><title>The influence of Mn doping on the structural and optical properties of ZnO nanostructures</title><author>Toufiq, Arbab Mohammad ; Hussain, Rafaqat ; Shah, A. ; Mahmood, Arshad ; Rehman, Asmat ; Khan, Amjad ; Rahman, Shams ur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-b8614be6b77ab854dda9d84bef81a686bb0e47c054da545ee1e579d6280fba7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blue shift</topic><topic>Defect states</topic><topic>Diffraction</topic><topic>Doppler effect</topic><topic>Excitation spectra</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>Mn doped ZnO</topic><topic>Morphology</topic><topic>Nanoplates</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Optical properties</topic><topic>Oxygen vacancies</topic><topic>Perturbation</topic><topic>Photoluminescence</topic><topic>Red shift</topic><topic>Scanning electron microscopy</topic><topic>Studies</topic><topic>Surface defects</topic><topic>Wurtzite</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toufiq, Arbab Mohammad</creatorcontrib><creatorcontrib>Hussain, Rafaqat</creatorcontrib><creatorcontrib>Shah, A.</creatorcontrib><creatorcontrib>Mahmood, Arshad</creatorcontrib><creatorcontrib>Rehman, Asmat</creatorcontrib><creatorcontrib>Khan, Amjad</creatorcontrib><creatorcontrib>Rahman, Shams ur</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toufiq, Arbab Mohammad</au><au>Hussain, Rafaqat</au><au>Shah, A.</au><au>Mahmood, Arshad</au><au>Rehman, Asmat</au><au>Khan, Amjad</au><au>Rahman, Shams ur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of Mn doping on the structural and optical properties of ZnO nanostructures</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>604</volume><spage>412731</spage><pages>412731-</pages><artnum>412731</artnum><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>We report the hydrothermal synthesis of Zn1-xMnxO (x = 0.00, 0.02, 0.04, 0.06) nanostructures and their structural, morphological and optical properties. The X-ray diffraction analysis confirmed the wurtzite phase and successful incorporation of Mn in ZnO matrix. Field emission scanning electron microscopy (FE-SEM) images revealed the suppression of growth rate and change in morphology of ZnO from nanoplates to nanorods at higher Mn concentration. Furthermore, a red shift is observed in the Fourier transform infra-red (FTIR) spectra, which is attributed to the variation of bond length and Zn–O–Zn structural perturbation. UV–visible absorption measurements indicated a blue shift in the bandgap from 3.28 eV (pure ZnO) to 3.42 eV (x = 0.06), which is assigned to the Burstein-Moss effect. The photoluminescence spectra exhibited UV excitonic and yellow-green defective emissions. The intensity of broad visible emission peak is decreased which is ascribed to the surface defect quenching due to the presence of Mn as a dopant.
•Morphology-controlled synthesis of wurtzite Zn1-xMnxO nanoarchitectures (x = 0.00, 0.02, 0.04, and 0.06) is reported.•The transformation from nanoplates to nanorod-type morphology is observed with the addition of Mn in ZnO lattice.•The enhancement in band gap energies is observed with the increase in Mn concentration ascribed to Burstein–Moss effect.•The increase in Mn concentration results in quenching of the PL intensity due to non-radiative recombination centers.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2020.412731</doi><orcidid>https://orcid.org/0000-0002-2533-8847</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-4526 |
ispartof | Physica. B, Condensed matter, 2021-03, Vol.604, p.412731, Article 412731 |
issn | 0921-4526 1873-2135 |
language | eng |
recordid | cdi_proquest_journals_2519039353 |
source | Access via ScienceDirect (Elsevier) |
subjects | Blue shift Defect states Diffraction Doppler effect Excitation spectra Field emission microscopy Fourier transforms Mn doped ZnO Morphology Nanoplates Nanorods Nanostructure Optical properties Oxygen vacancies Perturbation Photoluminescence Red shift Scanning electron microscopy Studies Surface defects Wurtzite Zinc oxide Zinc oxides |
title | The influence of Mn doping on the structural and optical properties of ZnO nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A08%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20Mn%20doping%20on%20the%20structural%20and%20optical%20properties%20of%20ZnO%20nanostructures&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Toufiq,%20Arbab%20Mohammad&rft.date=2021-03-01&rft.volume=604&rft.spage=412731&rft.pages=412731-&rft.artnum=412731&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2020.412731&rft_dat=%3Cproquest_cross%3E2519039353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519039353&rft_id=info:pmid/&rft_els_id=S0921452620307109&rfr_iscdi=true |