The influence of Mn doping on the structural and optical properties of ZnO nanostructures

We report the hydrothermal synthesis of Zn1-xMnxO (x = 0.00, 0.02, 0.04, 0.06) nanostructures and their structural, morphological and optical properties. The X-ray diffraction analysis confirmed the wurtzite phase and successful incorporation of Mn in ZnO matrix. Field emission scanning electron mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2021-03, Vol.604, p.412731, Article 412731
Hauptverfasser: Toufiq, Arbab Mohammad, Hussain, Rafaqat, Shah, A., Mahmood, Arshad, Rehman, Asmat, Khan, Amjad, Rahman, Shams ur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 412731
container_title Physica. B, Condensed matter
container_volume 604
creator Toufiq, Arbab Mohammad
Hussain, Rafaqat
Shah, A.
Mahmood, Arshad
Rehman, Asmat
Khan, Amjad
Rahman, Shams ur
description We report the hydrothermal synthesis of Zn1-xMnxO (x = 0.00, 0.02, 0.04, 0.06) nanostructures and their structural, morphological and optical properties. The X-ray diffraction analysis confirmed the wurtzite phase and successful incorporation of Mn in ZnO matrix. Field emission scanning electron microscopy (FE-SEM) images revealed the suppression of growth rate and change in morphology of ZnO from nanoplates to nanorods at higher Mn concentration. Furthermore, a red shift is observed in the Fourier transform infra-red (FTIR) spectra, which is attributed to the variation of bond length and Zn–O–Zn structural perturbation. UV–visible absorption measurements indicated a blue shift in the bandgap from 3.28 eV (pure ZnO) to 3.42 eV (x = 0.06), which is assigned to the Burstein-Moss effect. The photoluminescence spectra exhibited UV excitonic and yellow-green defective emissions. The intensity of broad visible emission peak is decreased which is ascribed to the surface defect quenching due to the presence of Mn as a dopant. •Morphology-controlled synthesis of wurtzite Zn1-xMnxO nanoarchitectures (x = 0.00, 0.02, 0.04, and 0.06) is reported.•The transformation from nanoplates to nanorod-type morphology is observed with the addition of Mn in ZnO lattice.•The enhancement in band gap energies is observed with the increase in Mn concentration ascribed to Burstein–Moss effect.•The increase in Mn concentration results in quenching of the PL intensity due to non-radiative recombination centers.
doi_str_mv 10.1016/j.physb.2020.412731
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2519039353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452620307109</els_id><sourcerecordid>2519039353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-b8614be6b77ab854dda9d84bef81a686bb0e47c054da545ee1e579d6280fba7f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1gsMSfYcRInAwOq-JKKupQBFsuxL9RRsYOdIPXf4xBY8XLW3fvex4PQJSUpJbS87tJ-dwhNmpGMpDnNOKNHaEErzpKMsuIYLUid0SQvsvIUnYXQkfgopwv0ut0BNrbdj2AVYNfiZ4u16419x87iIVbD4Ec1jF7usbQau34wKv5773rwg4Ewud7sBltp3Z8Ywjk6aeU-wMVvXKKX-7vt6jFZbx6eVrfrRDFGh6SpSpo3UDacy6Yqcq1lrauYaSsqy6psGgI5VyRWZJEXABQKXusyq0jbSN6yJbqa-8aFPkcIg-jc6G0cKbKC1oTVrGBRxWaV8i4ED63ovfmQ_iAoERND0YkfhmJiKGaG0XUzuyAe8GXAi6DMBEobD2oQ2pl__d8OXXx0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519039353</pqid></control><display><type>article</type><title>The influence of Mn doping on the structural and optical properties of ZnO nanostructures</title><source>Access via ScienceDirect (Elsevier)</source><creator>Toufiq, Arbab Mohammad ; Hussain, Rafaqat ; Shah, A. ; Mahmood, Arshad ; Rehman, Asmat ; Khan, Amjad ; Rahman, Shams ur</creator><creatorcontrib>Toufiq, Arbab Mohammad ; Hussain, Rafaqat ; Shah, A. ; Mahmood, Arshad ; Rehman, Asmat ; Khan, Amjad ; Rahman, Shams ur</creatorcontrib><description>We report the hydrothermal synthesis of Zn1-xMnxO (x = 0.00, 0.02, 0.04, 0.06) nanostructures and their structural, morphological and optical properties. The X-ray diffraction analysis confirmed the wurtzite phase and successful incorporation of Mn in ZnO matrix. Field emission scanning electron microscopy (FE-SEM) images revealed the suppression of growth rate and change in morphology of ZnO from nanoplates to nanorods at higher Mn concentration. Furthermore, a red shift is observed in the Fourier transform infra-red (FTIR) spectra, which is attributed to the variation of bond length and Zn–O–Zn structural perturbation. UV–visible absorption measurements indicated a blue shift in the bandgap from 3.28 eV (pure ZnO) to 3.42 eV (x = 0.06), which is assigned to the Burstein-Moss effect. The photoluminescence spectra exhibited UV excitonic and yellow-green defective emissions. The intensity of broad visible emission peak is decreased which is ascribed to the surface defect quenching due to the presence of Mn as a dopant. •Morphology-controlled synthesis of wurtzite Zn1-xMnxO nanoarchitectures (x = 0.00, 0.02, 0.04, and 0.06) is reported.•The transformation from nanoplates to nanorod-type morphology is observed with the addition of Mn in ZnO lattice.•The enhancement in band gap energies is observed with the increase in Mn concentration ascribed to Burstein–Moss effect.•The increase in Mn concentration results in quenching of the PL intensity due to non-radiative recombination centers.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2020.412731</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Blue shift ; Defect states ; Diffraction ; Doppler effect ; Excitation spectra ; Field emission microscopy ; Fourier transforms ; Mn doped ZnO ; Morphology ; Nanoplates ; Nanorods ; Nanostructure ; Optical properties ; Oxygen vacancies ; Perturbation ; Photoluminescence ; Red shift ; Scanning electron microscopy ; Studies ; Surface defects ; Wurtzite ; Zinc oxide ; Zinc oxides</subject><ispartof>Physica. B, Condensed matter, 2021-03, Vol.604, p.412731, Article 412731</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-b8614be6b77ab854dda9d84bef81a686bb0e47c054da545ee1e579d6280fba7f3</citedby><cites>FETCH-LOGICAL-c331t-b8614be6b77ab854dda9d84bef81a686bb0e47c054da545ee1e579d6280fba7f3</cites><orcidid>0000-0002-2533-8847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physb.2020.412731$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Toufiq, Arbab Mohammad</creatorcontrib><creatorcontrib>Hussain, Rafaqat</creatorcontrib><creatorcontrib>Shah, A.</creatorcontrib><creatorcontrib>Mahmood, Arshad</creatorcontrib><creatorcontrib>Rehman, Asmat</creatorcontrib><creatorcontrib>Khan, Amjad</creatorcontrib><creatorcontrib>Rahman, Shams ur</creatorcontrib><title>The influence of Mn doping on the structural and optical properties of ZnO nanostructures</title><title>Physica. B, Condensed matter</title><description>We report the hydrothermal synthesis of Zn1-xMnxO (x = 0.00, 0.02, 0.04, 0.06) nanostructures and their structural, morphological and optical properties. The X-ray diffraction analysis confirmed the wurtzite phase and successful incorporation of Mn in ZnO matrix. Field emission scanning electron microscopy (FE-SEM) images revealed the suppression of growth rate and change in morphology of ZnO from nanoplates to nanorods at higher Mn concentration. Furthermore, a red shift is observed in the Fourier transform infra-red (FTIR) spectra, which is attributed to the variation of bond length and Zn–O–Zn structural perturbation. UV–visible absorption measurements indicated a blue shift in the bandgap from 3.28 eV (pure ZnO) to 3.42 eV (x = 0.06), which is assigned to the Burstein-Moss effect. The photoluminescence spectra exhibited UV excitonic and yellow-green defective emissions. The intensity of broad visible emission peak is decreased which is ascribed to the surface defect quenching due to the presence of Mn as a dopant. •Morphology-controlled synthesis of wurtzite Zn1-xMnxO nanoarchitectures (x = 0.00, 0.02, 0.04, and 0.06) is reported.•The transformation from nanoplates to nanorod-type morphology is observed with the addition of Mn in ZnO lattice.•The enhancement in band gap energies is observed with the increase in Mn concentration ascribed to Burstein–Moss effect.•The increase in Mn concentration results in quenching of the PL intensity due to non-radiative recombination centers.</description><subject>Blue shift</subject><subject>Defect states</subject><subject>Diffraction</subject><subject>Doppler effect</subject><subject>Excitation spectra</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>Mn doped ZnO</subject><subject>Morphology</subject><subject>Nanoplates</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Optical properties</subject><subject>Oxygen vacancies</subject><subject>Perturbation</subject><subject>Photoluminescence</subject><subject>Red shift</subject><subject>Scanning electron microscopy</subject><subject>Studies</subject><subject>Surface defects</subject><subject>Wurtzite</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1gsMSfYcRInAwOq-JKKupQBFsuxL9RRsYOdIPXf4xBY8XLW3fvex4PQJSUpJbS87tJ-dwhNmpGMpDnNOKNHaEErzpKMsuIYLUid0SQvsvIUnYXQkfgopwv0ut0BNrbdj2AVYNfiZ4u16419x87iIVbD4Ec1jF7usbQau34wKv5773rwg4Ewud7sBltp3Z8Ywjk6aeU-wMVvXKKX-7vt6jFZbx6eVrfrRDFGh6SpSpo3UDacy6Yqcq1lrauYaSsqy6psGgI5VyRWZJEXABQKXusyq0jbSN6yJbqa-8aFPkcIg-jc6G0cKbKC1oTVrGBRxWaV8i4ED63ovfmQ_iAoERND0YkfhmJiKGaG0XUzuyAe8GXAi6DMBEobD2oQ2pl__d8OXXx0</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Toufiq, Arbab Mohammad</creator><creator>Hussain, Rafaqat</creator><creator>Shah, A.</creator><creator>Mahmood, Arshad</creator><creator>Rehman, Asmat</creator><creator>Khan, Amjad</creator><creator>Rahman, Shams ur</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2533-8847</orcidid></search><sort><creationdate>20210301</creationdate><title>The influence of Mn doping on the structural and optical properties of ZnO nanostructures</title><author>Toufiq, Arbab Mohammad ; Hussain, Rafaqat ; Shah, A. ; Mahmood, Arshad ; Rehman, Asmat ; Khan, Amjad ; Rahman, Shams ur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-b8614be6b77ab854dda9d84bef81a686bb0e47c054da545ee1e579d6280fba7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blue shift</topic><topic>Defect states</topic><topic>Diffraction</topic><topic>Doppler effect</topic><topic>Excitation spectra</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>Mn doped ZnO</topic><topic>Morphology</topic><topic>Nanoplates</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Optical properties</topic><topic>Oxygen vacancies</topic><topic>Perturbation</topic><topic>Photoluminescence</topic><topic>Red shift</topic><topic>Scanning electron microscopy</topic><topic>Studies</topic><topic>Surface defects</topic><topic>Wurtzite</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toufiq, Arbab Mohammad</creatorcontrib><creatorcontrib>Hussain, Rafaqat</creatorcontrib><creatorcontrib>Shah, A.</creatorcontrib><creatorcontrib>Mahmood, Arshad</creatorcontrib><creatorcontrib>Rehman, Asmat</creatorcontrib><creatorcontrib>Khan, Amjad</creatorcontrib><creatorcontrib>Rahman, Shams ur</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toufiq, Arbab Mohammad</au><au>Hussain, Rafaqat</au><au>Shah, A.</au><au>Mahmood, Arshad</au><au>Rehman, Asmat</au><au>Khan, Amjad</au><au>Rahman, Shams ur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of Mn doping on the structural and optical properties of ZnO nanostructures</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>604</volume><spage>412731</spage><pages>412731-</pages><artnum>412731</artnum><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>We report the hydrothermal synthesis of Zn1-xMnxO (x = 0.00, 0.02, 0.04, 0.06) nanostructures and their structural, morphological and optical properties. The X-ray diffraction analysis confirmed the wurtzite phase and successful incorporation of Mn in ZnO matrix. Field emission scanning electron microscopy (FE-SEM) images revealed the suppression of growth rate and change in morphology of ZnO from nanoplates to nanorods at higher Mn concentration. Furthermore, a red shift is observed in the Fourier transform infra-red (FTIR) spectra, which is attributed to the variation of bond length and Zn–O–Zn structural perturbation. UV–visible absorption measurements indicated a blue shift in the bandgap from 3.28 eV (pure ZnO) to 3.42 eV (x = 0.06), which is assigned to the Burstein-Moss effect. The photoluminescence spectra exhibited UV excitonic and yellow-green defective emissions. The intensity of broad visible emission peak is decreased which is ascribed to the surface defect quenching due to the presence of Mn as a dopant. •Morphology-controlled synthesis of wurtzite Zn1-xMnxO nanoarchitectures (x = 0.00, 0.02, 0.04, and 0.06) is reported.•The transformation from nanoplates to nanorod-type morphology is observed with the addition of Mn in ZnO lattice.•The enhancement in band gap energies is observed with the increase in Mn concentration ascribed to Burstein–Moss effect.•The increase in Mn concentration results in quenching of the PL intensity due to non-radiative recombination centers.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2020.412731</doi><orcidid>https://orcid.org/0000-0002-2533-8847</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2021-03, Vol.604, p.412731, Article 412731
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_journals_2519039353
source Access via ScienceDirect (Elsevier)
subjects Blue shift
Defect states
Diffraction
Doppler effect
Excitation spectra
Field emission microscopy
Fourier transforms
Mn doped ZnO
Morphology
Nanoplates
Nanorods
Nanostructure
Optical properties
Oxygen vacancies
Perturbation
Photoluminescence
Red shift
Scanning electron microscopy
Studies
Surface defects
Wurtzite
Zinc oxide
Zinc oxides
title The influence of Mn doping on the structural and optical properties of ZnO nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A08%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20Mn%20doping%20on%20the%20structural%20and%20optical%20properties%20of%20ZnO%20nanostructures&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Toufiq,%20Arbab%20Mohammad&rft.date=2021-03-01&rft.volume=604&rft.spage=412731&rft.pages=412731-&rft.artnum=412731&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2020.412731&rft_dat=%3Cproquest_cross%3E2519039353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519039353&rft_id=info:pmid/&rft_els_id=S0921452620307109&rfr_iscdi=true