A 3D Non-Stationary Channel Model for 6G Wireless Systems Employing Intelligent Reflecting Surfaces with Practical Phase Shifts
In this paper, a three-dimensional (3D) geometry based stochastic model (GBSM) for a massive multiple-input multiple-output (MIMO) communication system employing practical discrete intelligent reflecting surface (IRS) is proposed. The proposed channel model supports the scenario where both transceiv...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-04 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sun, Yingzhuo Cheng-Xiang, Wang Huang, Jie Wang, Jun |
description | In this paper, a three-dimensional (3D) geometry based stochastic model (GBSM) for a massive multiple-input multiple-output (MIMO) communication system employing practical discrete intelligent reflecting surface (IRS) is proposed. The proposed channel model supports the scenario where both transceivers and environments move. The evolution of clusters in the space domain and the practical discrete phase shifts are considered in the channel model. The steering vector is set at the base station for the cooperation with IRS. Through studying statistical properties, the non-stationary properties are verified. We find that IRS plays a role in separating the whole channel and make the absolute value of time autocorrelation function (ACF) larger than the situation without employing IRS. Time ACF of the case using discrete phase shifts is also compared with the continuous case. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2518862251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518862251</sourcerecordid><originalsourceid>FETCH-proquest_journals_25188622513</originalsourceid><addsrcrecordid>eNqNisFqwkAURYeCYKj5hwddB-JME7MtNlUXFjGFLsOQvjEj44yd90LJyl83hX5AN_fAOfdBJFKpZVY9SzkXKdE5z3NZrmRRqETcXkC9wnvwWcOabfA6jrDutffoYB--pjUhQrmBTxvRIRE0IzFeCOrL1YXR-hPsPKNz9oSe4YjGYce_uhmi0R0S_Fju4RD1pDvt4NBrQmh6a5gWYma0I0z_-Cie3uqP9Ta7xvA9IHF7DkP0U2plsayqUk5Q_3vdAfLoT2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518862251</pqid></control><display><type>article</type><title>A 3D Non-Stationary Channel Model for 6G Wireless Systems Employing Intelligent Reflecting Surfaces with Practical Phase Shifts</title><source>Free E- Journals</source><creator>Sun, Yingzhuo ; Cheng-Xiang, Wang ; Huang, Jie ; Wang, Jun</creator><creatorcontrib>Sun, Yingzhuo ; Cheng-Xiang, Wang ; Huang, Jie ; Wang, Jun</creatorcontrib><description>In this paper, a three-dimensional (3D) geometry based stochastic model (GBSM) for a massive multiple-input multiple-output (MIMO) communication system employing practical discrete intelligent reflecting surface (IRS) is proposed. The proposed channel model supports the scenario where both transceivers and environments move. The evolution of clusters in the space domain and the practical discrete phase shifts are considered in the channel model. The steering vector is set at the base station for the cooperation with IRS. Through studying statistical properties, the non-stationary properties are verified. We find that IRS plays a role in separating the whole channel and make the absolute value of time autocorrelation function (ACF) larger than the situation without employing IRS. Time ACF of the case using discrete phase shifts is also compared with the continuous case.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>6G mobile communication ; Autocorrelation functions ; Communications systems ; MIMO communication ; Reconfigurable intelligent surfaces ; Steering ; Stochastic models ; Three dimensional models ; Transceivers</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Sun, Yingzhuo</creatorcontrib><creatorcontrib>Cheng-Xiang, Wang</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><title>A 3D Non-Stationary Channel Model for 6G Wireless Systems Employing Intelligent Reflecting Surfaces with Practical Phase Shifts</title><title>arXiv.org</title><description>In this paper, a three-dimensional (3D) geometry based stochastic model (GBSM) for a massive multiple-input multiple-output (MIMO) communication system employing practical discrete intelligent reflecting surface (IRS) is proposed. The proposed channel model supports the scenario where both transceivers and environments move. The evolution of clusters in the space domain and the practical discrete phase shifts are considered in the channel model. The steering vector is set at the base station for the cooperation with IRS. Through studying statistical properties, the non-stationary properties are verified. We find that IRS plays a role in separating the whole channel and make the absolute value of time autocorrelation function (ACF) larger than the situation without employing IRS. Time ACF of the case using discrete phase shifts is also compared with the continuous case.</description><subject>6G mobile communication</subject><subject>Autocorrelation functions</subject><subject>Communications systems</subject><subject>MIMO communication</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Steering</subject><subject>Stochastic models</subject><subject>Three dimensional models</subject><subject>Transceivers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNisFqwkAURYeCYKj5hwddB-JME7MtNlUXFjGFLsOQvjEj44yd90LJyl83hX5AN_fAOfdBJFKpZVY9SzkXKdE5z3NZrmRRqETcXkC9wnvwWcOabfA6jrDutffoYB--pjUhQrmBTxvRIRE0IzFeCOrL1YXR-hPsPKNz9oSe4YjGYce_uhmi0R0S_Fju4RD1pDvt4NBrQmh6a5gWYma0I0z_-Cie3uqP9Ta7xvA9IHF7DkP0U2plsayqUk5Q_3vdAfLoT2k</recordid><startdate>20210425</startdate><enddate>20210425</enddate><creator>Sun, Yingzhuo</creator><creator>Cheng-Xiang, Wang</creator><creator>Huang, Jie</creator><creator>Wang, Jun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210425</creationdate><title>A 3D Non-Stationary Channel Model for 6G Wireless Systems Employing Intelligent Reflecting Surfaces with Practical Phase Shifts</title><author>Sun, Yingzhuo ; Cheng-Xiang, Wang ; Huang, Jie ; Wang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25188622513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>6G mobile communication</topic><topic>Autocorrelation functions</topic><topic>Communications systems</topic><topic>MIMO communication</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Steering</topic><topic>Stochastic models</topic><topic>Three dimensional models</topic><topic>Transceivers</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yingzhuo</creatorcontrib><creatorcontrib>Cheng-Xiang, Wang</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yingzhuo</au><au>Cheng-Xiang, Wang</au><au>Huang, Jie</au><au>Wang, Jun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A 3D Non-Stationary Channel Model for 6G Wireless Systems Employing Intelligent Reflecting Surfaces with Practical Phase Shifts</atitle><jtitle>arXiv.org</jtitle><date>2021-04-25</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper, a three-dimensional (3D) geometry based stochastic model (GBSM) for a massive multiple-input multiple-output (MIMO) communication system employing practical discrete intelligent reflecting surface (IRS) is proposed. The proposed channel model supports the scenario where both transceivers and environments move. The evolution of clusters in the space domain and the practical discrete phase shifts are considered in the channel model. The steering vector is set at the base station for the cooperation with IRS. Through studying statistical properties, the non-stationary properties are verified. We find that IRS plays a role in separating the whole channel and make the absolute value of time autocorrelation function (ACF) larger than the situation without employing IRS. Time ACF of the case using discrete phase shifts is also compared with the continuous case.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2518862251 |
source | Free E- Journals |
subjects | 6G mobile communication Autocorrelation functions Communications systems MIMO communication Reconfigurable intelligent surfaces Steering Stochastic models Three dimensional models Transceivers |
title | A 3D Non-Stationary Channel Model for 6G Wireless Systems Employing Intelligent Reflecting Surfaces with Practical Phase Shifts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%203D%20Non-Stationary%20Channel%20Model%20for%206G%20Wireless%20Systems%20Employing%20Intelligent%20Reflecting%20Surfaces%20with%20Practical%20Phase%20Shifts&rft.jtitle=arXiv.org&rft.au=Sun,%20Yingzhuo&rft.date=2021-04-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2518862251%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518862251&rft_id=info:pmid/&rfr_iscdi=true |