A 3D Non-Stationary Channel Model for 6G Wireless Systems Employing Intelligent Reflecting Surfaces with Practical Phase Shifts

In this paper, a three-dimensional (3D) geometry based stochastic model (GBSM) for a massive multiple-input multiple-output (MIMO) communication system employing practical discrete intelligent reflecting surface (IRS) is proposed. The proposed channel model supports the scenario where both transceiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-04
Hauptverfasser: Sun, Yingzhuo, Cheng-Xiang, Wang, Huang, Jie, Wang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sun, Yingzhuo
Cheng-Xiang, Wang
Huang, Jie
Wang, Jun
description In this paper, a three-dimensional (3D) geometry based stochastic model (GBSM) for a massive multiple-input multiple-output (MIMO) communication system employing practical discrete intelligent reflecting surface (IRS) is proposed. The proposed channel model supports the scenario where both transceivers and environments move. The evolution of clusters in the space domain and the practical discrete phase shifts are considered in the channel model. The steering vector is set at the base station for the cooperation with IRS. Through studying statistical properties, the non-stationary properties are verified. We find that IRS plays a role in separating the whole channel and make the absolute value of time autocorrelation function (ACF) larger than the situation without employing IRS. Time ACF of the case using discrete phase shifts is also compared with the continuous case.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2518862251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518862251</sourcerecordid><originalsourceid>FETCH-proquest_journals_25188622513</originalsourceid><addsrcrecordid>eNqNisFqwkAURYeCYKj5hwddB-JME7MtNlUXFjGFLsOQvjEj44yd90LJyl83hX5AN_fAOfdBJFKpZVY9SzkXKdE5z3NZrmRRqETcXkC9wnvwWcOabfA6jrDutffoYB--pjUhQrmBTxvRIRE0IzFeCOrL1YXR-hPsPKNz9oSe4YjGYce_uhmi0R0S_Fju4RD1pDvt4NBrQmh6a5gWYma0I0z_-Cie3uqP9Ta7xvA9IHF7DkP0U2plsayqUk5Q_3vdAfLoT2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518862251</pqid></control><display><type>article</type><title>A 3D Non-Stationary Channel Model for 6G Wireless Systems Employing Intelligent Reflecting Surfaces with Practical Phase Shifts</title><source>Free E- Journals</source><creator>Sun, Yingzhuo ; Cheng-Xiang, Wang ; Huang, Jie ; Wang, Jun</creator><creatorcontrib>Sun, Yingzhuo ; Cheng-Xiang, Wang ; Huang, Jie ; Wang, Jun</creatorcontrib><description>In this paper, a three-dimensional (3D) geometry based stochastic model (GBSM) for a massive multiple-input multiple-output (MIMO) communication system employing practical discrete intelligent reflecting surface (IRS) is proposed. The proposed channel model supports the scenario where both transceivers and environments move. The evolution of clusters in the space domain and the practical discrete phase shifts are considered in the channel model. The steering vector is set at the base station for the cooperation with IRS. Through studying statistical properties, the non-stationary properties are verified. We find that IRS plays a role in separating the whole channel and make the absolute value of time autocorrelation function (ACF) larger than the situation without employing IRS. Time ACF of the case using discrete phase shifts is also compared with the continuous case.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>6G mobile communication ; Autocorrelation functions ; Communications systems ; MIMO communication ; Reconfigurable intelligent surfaces ; Steering ; Stochastic models ; Three dimensional models ; Transceivers</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Sun, Yingzhuo</creatorcontrib><creatorcontrib>Cheng-Xiang, Wang</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><title>A 3D Non-Stationary Channel Model for 6G Wireless Systems Employing Intelligent Reflecting Surfaces with Practical Phase Shifts</title><title>arXiv.org</title><description>In this paper, a three-dimensional (3D) geometry based stochastic model (GBSM) for a massive multiple-input multiple-output (MIMO) communication system employing practical discrete intelligent reflecting surface (IRS) is proposed. The proposed channel model supports the scenario where both transceivers and environments move. The evolution of clusters in the space domain and the practical discrete phase shifts are considered in the channel model. The steering vector is set at the base station for the cooperation with IRS. Through studying statistical properties, the non-stationary properties are verified. We find that IRS plays a role in separating the whole channel and make the absolute value of time autocorrelation function (ACF) larger than the situation without employing IRS. Time ACF of the case using discrete phase shifts is also compared with the continuous case.</description><subject>6G mobile communication</subject><subject>Autocorrelation functions</subject><subject>Communications systems</subject><subject>MIMO communication</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Steering</subject><subject>Stochastic models</subject><subject>Three dimensional models</subject><subject>Transceivers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNisFqwkAURYeCYKj5hwddB-JME7MtNlUXFjGFLsOQvjEj44yd90LJyl83hX5AN_fAOfdBJFKpZVY9SzkXKdE5z3NZrmRRqETcXkC9wnvwWcOabfA6jrDutffoYB--pjUhQrmBTxvRIRE0IzFeCOrL1YXR-hPsPKNz9oSe4YjGYce_uhmi0R0S_Fju4RD1pDvt4NBrQmh6a5gWYma0I0z_-Cie3uqP9Ta7xvA9IHF7DkP0U2plsayqUk5Q_3vdAfLoT2k</recordid><startdate>20210425</startdate><enddate>20210425</enddate><creator>Sun, Yingzhuo</creator><creator>Cheng-Xiang, Wang</creator><creator>Huang, Jie</creator><creator>Wang, Jun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210425</creationdate><title>A 3D Non-Stationary Channel Model for 6G Wireless Systems Employing Intelligent Reflecting Surfaces with Practical Phase Shifts</title><author>Sun, Yingzhuo ; Cheng-Xiang, Wang ; Huang, Jie ; Wang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25188622513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>6G mobile communication</topic><topic>Autocorrelation functions</topic><topic>Communications systems</topic><topic>MIMO communication</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Steering</topic><topic>Stochastic models</topic><topic>Three dimensional models</topic><topic>Transceivers</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yingzhuo</creatorcontrib><creatorcontrib>Cheng-Xiang, Wang</creatorcontrib><creatorcontrib>Huang, Jie</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yingzhuo</au><au>Cheng-Xiang, Wang</au><au>Huang, Jie</au><au>Wang, Jun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A 3D Non-Stationary Channel Model for 6G Wireless Systems Employing Intelligent Reflecting Surfaces with Practical Phase Shifts</atitle><jtitle>arXiv.org</jtitle><date>2021-04-25</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper, a three-dimensional (3D) geometry based stochastic model (GBSM) for a massive multiple-input multiple-output (MIMO) communication system employing practical discrete intelligent reflecting surface (IRS) is proposed. The proposed channel model supports the scenario where both transceivers and environments move. The evolution of clusters in the space domain and the practical discrete phase shifts are considered in the channel model. The steering vector is set at the base station for the cooperation with IRS. Through studying statistical properties, the non-stationary properties are verified. We find that IRS plays a role in separating the whole channel and make the absolute value of time autocorrelation function (ACF) larger than the situation without employing IRS. Time ACF of the case using discrete phase shifts is also compared with the continuous case.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2518862251
source Free E- Journals
subjects 6G mobile communication
Autocorrelation functions
Communications systems
MIMO communication
Reconfigurable intelligent surfaces
Steering
Stochastic models
Three dimensional models
Transceivers
title A 3D Non-Stationary Channel Model for 6G Wireless Systems Employing Intelligent Reflecting Surfaces with Practical Phase Shifts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%203D%20Non-Stationary%20Channel%20Model%20for%206G%20Wireless%20Systems%20Employing%20Intelligent%20Reflecting%20Surfaces%20with%20Practical%20Phase%20Shifts&rft.jtitle=arXiv.org&rft.au=Sun,%20Yingzhuo&rft.date=2021-04-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2518862251%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518862251&rft_id=info:pmid/&rfr_iscdi=true