Stronger Bounds for Weak Epsilon-Nets in Higher Dimensions

Given a finite point set \(P\) in \({\mathbb R}^d\), and \(\epsilon>0\) we say that \(N\subseteq{ \mathbb R}^d\) is a weak \(\epsilon\)-net if it pierces every convex set \(K\) with \(|K\cap P|\geq \epsilon |P|\). We show that for any finite point set in dimension \(d\geq 3\), and any \(\epsilon&...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
1. Verfasser: Rubin, Natan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Rubin, Natan
description Given a finite point set \(P\) in \({\mathbb R}^d\), and \(\epsilon>0\) we say that \(N\subseteq{ \mathbb R}^d\) is a weak \(\epsilon\)-net if it pierces every convex set \(K\) with \(|K\cap P|\geq \epsilon |P|\). We show that for any finite point set in dimension \(d\geq 3\), and any \(\epsilon>0\), one can construct a weak \(\epsilon\)-net whose cardinality is \(\displaystyle O^*\left(\frac{1}{\epsilon^{2.558}}\right)\) in dimension \(d=3\), and \(\displaystyle o\left(\frac{1}{\epsilon^{d-1/2}}\right)\) in all dimensions \(d\geq 4\). To be precise, our weak \(\epsilon\)-net has cardinality \(\displaystyle O\left(\frac{1}{\epsilon^{\alpha_d+\gamma}}\right)\) for any \(\gamma>0\), with $$ \alpha_d= \left\{ \begin{array}{l} 2.558 & \text{if} \ d=3 \\3.48 & \text{if} \ d=4 \\\left(d+\sqrt{d^2-2d}\right)/2 & \text{if} \ d\geq 5. \end{array}\right\} $$ This is the first significant improvement of the bound of \(\displaystyle \tilde{O}\left(\frac{1}{\epsilon^d}\right)\) that was obtained in 1993 by Chazelle, Edelsbrunner, Grigni, Guibas, Sharir, and Welzl for general point sets in dimension \(d\geq 3\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2518861072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518861072</sourcerecordid><originalsourceid>FETCH-proquest_journals_25188610723</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC8mN_cFRrXRyUXAsBdOaWu-tuen728EHcDrD-RYiAmN0UuwAViJm7pVSkOWQpiYS-2vwhJ318kATPli25OXdNi9ZjuwGwuRiA0uHsnLdc2Yn97bIjpA3Ytk2A9v417XYnsvbsUpGT5_Jcqh7mjzOq4ZUF0WmVQ7mP_UFjOU2ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518861072</pqid></control><display><type>article</type><title>Stronger Bounds for Weak Epsilon-Nets in Higher Dimensions</title><source>Free E- Journals</source><creator>Rubin, Natan</creator><creatorcontrib>Rubin, Natan</creatorcontrib><description>Given a finite point set \(P\) in \({\mathbb R}^d\), and \(\epsilon&gt;0\) we say that \(N\subseteq{ \mathbb R}^d\) is a weak \(\epsilon\)-net if it pierces every convex set \(K\) with \(|K\cap P|\geq \epsilon |P|\). We show that for any finite point set in dimension \(d\geq 3\), and any \(\epsilon&gt;0\), one can construct a weak \(\epsilon\)-net whose cardinality is \(\displaystyle O^*\left(\frac{1}{\epsilon^{2.558}}\right)\) in dimension \(d=3\), and \(\displaystyle o\left(\frac{1}{\epsilon^{d-1/2}}\right)\) in all dimensions \(d\geq 4\). To be precise, our weak \(\epsilon\)-net has cardinality \(\displaystyle O\left(\frac{1}{\epsilon^{\alpha_d+\gamma}}\right)\) for any \(\gamma&gt;0\), with $$ \alpha_d= \left\{ \begin{array}{l} 2.558 &amp; \text{if} \ d=3 \\3.48 &amp; \text{if} \ d=4 \\\left(d+\sqrt{d^2-2d}\right)/2 &amp; \text{if} \ d\geq 5. \end{array}\right\} $$ This is the first significant improvement of the bound of \(\displaystyle \tilde{O}\left(\frac{1}{\epsilon^d}\right)\) that was obtained in 1993 by Chazelle, Edelsbrunner, Grigni, Guibas, Sharir, and Welzl for general point sets in dimension \(d\geq 3\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Arrays ; Convexity</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Rubin, Natan</creatorcontrib><title>Stronger Bounds for Weak Epsilon-Nets in Higher Dimensions</title><title>arXiv.org</title><description>Given a finite point set \(P\) in \({\mathbb R}^d\), and \(\epsilon&gt;0\) we say that \(N\subseteq{ \mathbb R}^d\) is a weak \(\epsilon\)-net if it pierces every convex set \(K\) with \(|K\cap P|\geq \epsilon |P|\). We show that for any finite point set in dimension \(d\geq 3\), and any \(\epsilon&gt;0\), one can construct a weak \(\epsilon\)-net whose cardinality is \(\displaystyle O^*\left(\frac{1}{\epsilon^{2.558}}\right)\) in dimension \(d=3\), and \(\displaystyle o\left(\frac{1}{\epsilon^{d-1/2}}\right)\) in all dimensions \(d\geq 4\). To be precise, our weak \(\epsilon\)-net has cardinality \(\displaystyle O\left(\frac{1}{\epsilon^{\alpha_d+\gamma}}\right)\) for any \(\gamma&gt;0\), with $$ \alpha_d= \left\{ \begin{array}{l} 2.558 &amp; \text{if} \ d=3 \\3.48 &amp; \text{if} \ d=4 \\\left(d+\sqrt{d^2-2d}\right)/2 &amp; \text{if} \ d\geq 5. \end{array}\right\} $$ This is the first significant improvement of the bound of \(\displaystyle \tilde{O}\left(\frac{1}{\epsilon^d}\right)\) that was obtained in 1993 by Chazelle, Edelsbrunner, Grigni, Guibas, Sharir, and Welzl for general point sets in dimension \(d\geq 3\).</description><subject>Arrays</subject><subject>Convexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC8mN_cFRrXRyUXAsBdOaWu-tuen728EHcDrD-RYiAmN0UuwAViJm7pVSkOWQpiYS-2vwhJ318kATPli25OXdNi9ZjuwGwuRiA0uHsnLdc2Yn97bIjpA3Ytk2A9v417XYnsvbsUpGT5_Jcqh7mjzOq4ZUF0WmVQ7mP_UFjOU2ZQ</recordid><startdate>20231226</startdate><enddate>20231226</enddate><creator>Rubin, Natan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231226</creationdate><title>Stronger Bounds for Weak Epsilon-Nets in Higher Dimensions</title><author>Rubin, Natan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25188610723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrays</topic><topic>Convexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Rubin, Natan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rubin, Natan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stronger Bounds for Weak Epsilon-Nets in Higher Dimensions</atitle><jtitle>arXiv.org</jtitle><date>2023-12-26</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Given a finite point set \(P\) in \({\mathbb R}^d\), and \(\epsilon&gt;0\) we say that \(N\subseteq{ \mathbb R}^d\) is a weak \(\epsilon\)-net if it pierces every convex set \(K\) with \(|K\cap P|\geq \epsilon |P|\). We show that for any finite point set in dimension \(d\geq 3\), and any \(\epsilon&gt;0\), one can construct a weak \(\epsilon\)-net whose cardinality is \(\displaystyle O^*\left(\frac{1}{\epsilon^{2.558}}\right)\) in dimension \(d=3\), and \(\displaystyle o\left(\frac{1}{\epsilon^{d-1/2}}\right)\) in all dimensions \(d\geq 4\). To be precise, our weak \(\epsilon\)-net has cardinality \(\displaystyle O\left(\frac{1}{\epsilon^{\alpha_d+\gamma}}\right)\) for any \(\gamma&gt;0\), with $$ \alpha_d= \left\{ \begin{array}{l} 2.558 &amp; \text{if} \ d=3 \\3.48 &amp; \text{if} \ d=4 \\\left(d+\sqrt{d^2-2d}\right)/2 &amp; \text{if} \ d\geq 5. \end{array}\right\} $$ This is the first significant improvement of the bound of \(\displaystyle \tilde{O}\left(\frac{1}{\epsilon^d}\right)\) that was obtained in 1993 by Chazelle, Edelsbrunner, Grigni, Guibas, Sharir, and Welzl for general point sets in dimension \(d\geq 3\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2518861072
source Free E- Journals
subjects Arrays
Convexity
title Stronger Bounds for Weak Epsilon-Nets in Higher Dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stronger%20Bounds%20for%20Weak%20Epsilon-Nets%20in%20Higher%20Dimensions&rft.jtitle=arXiv.org&rft.au=Rubin,%20Natan&rft.date=2023-12-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2518861072%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518861072&rft_id=info:pmid/&rfr_iscdi=true