Spatial division networks for weakly supervised detection
With only global image-level annotations, weakly supervised learning of deep convolutional neural networks has shown enough capacity in classification and localization but lack of ability to present the detection explicitly. In this work, we propose a novel spatial division network, which is applied...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2021-05, Vol.33 (10), p.4965-4978 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4978 |
---|---|
container_issue | 10 |
container_start_page | 4965 |
container_title | Neural computing & applications |
container_volume | 33 |
creator | Liu, Yongsheng Chen, Wenyu Qu, Hong Mahmud, S. M. Hasan Miao, Kebin |
description | With only global image-level annotations, weakly supervised learning of deep convolutional neural networks has shown enough capacity in classification and localization but lack of ability to present the detection explicitly. In this work, we propose a novel spatial division network, which is applied to detect bounding boxes only with weak supervision. The essence of our model is two innovative differentiable modules, determination network and parameterized division, which perform the spatial division in feature maps of classification networks. After training, the learned parameters of the spatial division would correspond to a set of predicted bounding box coordinates. To demonstrate the effectiveness of our model for multi-label classification and weakly supervised detection, we conduct extensive experiments on the multi-MNIST dataset. Experimental results show our spatial division networks can (1) help improve the accuracy of multi-label classification, (2) implement in an end-to-end way only with the image-level annotations, and (3) output accurate bounding box coordinate, thereby achieving multi-digits detection. |
doi_str_mv | 10.1007/s00521-020-05257-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518857822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518857822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-51ae4cac291d760e431ce0ecf9409ff15a060831dcdc549af37ce93165ba4a9f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFf_gKeC5-jkq22OsvgFCx7Uc4jpRLpb25q0Lru_3mgFb55mYJ73HXgIOWdwyQDKqwigOKPAgaZFlXR_QDImhaACVHVIMtAynQspjslJjGsAkEWlMqKfBjs2ts3r5rOJTd_lHY7bPmxi7vuQb9Fu2l0epwFDumOd1ziiGxN4So68bSOe_c4Febm9eV7e09Xj3cPyekWdYHqkilmUzjquWV0WgFIwh4DOawnae6YsFFAJVrvaKamtF6VDLVihXq202osFuZh7h9B_TBhHs-6n0KWXhitWVaqsOE8UnykX-hgDejOE5t2GnWFgvhWZWZFJisyPIrNPITGHYoK7Nwx_1f-kvgDWA2pZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518857822</pqid></control><display><type>article</type><title>Spatial division networks for weakly supervised detection</title><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Yongsheng ; Chen, Wenyu ; Qu, Hong ; Mahmud, S. M. Hasan ; Miao, Kebin</creator><creatorcontrib>Liu, Yongsheng ; Chen, Wenyu ; Qu, Hong ; Mahmud, S. M. Hasan ; Miao, Kebin</creatorcontrib><description>With only global image-level annotations, weakly supervised learning of deep convolutional neural networks has shown enough capacity in classification and localization but lack of ability to present the detection explicitly. In this work, we propose a novel spatial division network, which is applied to detect bounding boxes only with weak supervision. The essence of our model is two innovative differentiable modules, determination network and parameterized division, which perform the spatial division in feature maps of classification networks. After training, the learned parameters of the spatial division would correspond to a set of predicted bounding box coordinates. To demonstrate the effectiveness of our model for multi-label classification and weakly supervised detection, we conduct extensive experiments on the multi-MNIST dataset. Experimental results show our spatial division networks can (1) help improve the accuracy of multi-label classification, (2) implement in an end-to-end way only with the image-level annotations, and (3) output accurate bounding box coordinate, thereby achieving multi-digits detection.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-020-05257-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Annotations ; Artificial Intelligence ; Artificial neural networks ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Feature maps ; Image classification ; Image Processing and Computer Vision ; Original Article ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing & applications, 2021-05, Vol.33 (10), p.4965-4978</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-51ae4cac291d760e431ce0ecf9409ff15a060831dcdc549af37ce93165ba4a9f3</citedby><cites>FETCH-LOGICAL-c319t-51ae4cac291d760e431ce0ecf9409ff15a060831dcdc549af37ce93165ba4a9f3</cites><orcidid>0000-0001-6114-3441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-020-05257-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-020-05257-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Liu, Yongsheng</creatorcontrib><creatorcontrib>Chen, Wenyu</creatorcontrib><creatorcontrib>Qu, Hong</creatorcontrib><creatorcontrib>Mahmud, S. M. Hasan</creatorcontrib><creatorcontrib>Miao, Kebin</creatorcontrib><title>Spatial division networks for weakly supervised detection</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>With only global image-level annotations, weakly supervised learning of deep convolutional neural networks has shown enough capacity in classification and localization but lack of ability to present the detection explicitly. In this work, we propose a novel spatial division network, which is applied to detect bounding boxes only with weak supervision. The essence of our model is two innovative differentiable modules, determination network and parameterized division, which perform the spatial division in feature maps of classification networks. After training, the learned parameters of the spatial division would correspond to a set of predicted bounding box coordinates. To demonstrate the effectiveness of our model for multi-label classification and weakly supervised detection, we conduct extensive experiments on the multi-MNIST dataset. Experimental results show our spatial division networks can (1) help improve the accuracy of multi-label classification, (2) implement in an end-to-end way only with the image-level annotations, and (3) output accurate bounding box coordinate, thereby achieving multi-digits detection.</description><subject>Annotations</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Feature maps</subject><subject>Image classification</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMoWFf_gKeC5-jkq22OsvgFCx7Uc4jpRLpb25q0Lru_3mgFb55mYJ73HXgIOWdwyQDKqwigOKPAgaZFlXR_QDImhaACVHVIMtAynQspjslJjGsAkEWlMqKfBjs2ts3r5rOJTd_lHY7bPmxi7vuQb9Fu2l0epwFDumOd1ziiGxN4So68bSOe_c4Febm9eV7e09Xj3cPyekWdYHqkilmUzjquWV0WgFIwh4DOawnae6YsFFAJVrvaKamtF6VDLVihXq202osFuZh7h9B_TBhHs-6n0KWXhitWVaqsOE8UnykX-hgDejOE5t2GnWFgvhWZWZFJisyPIrNPITGHYoK7Nwx_1f-kvgDWA2pZ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Liu, Yongsheng</creator><creator>Chen, Wenyu</creator><creator>Qu, Hong</creator><creator>Mahmud, S. M. Hasan</creator><creator>Miao, Kebin</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6114-3441</orcidid></search><sort><creationdate>20210501</creationdate><title>Spatial division networks for weakly supervised detection</title><author>Liu, Yongsheng ; Chen, Wenyu ; Qu, Hong ; Mahmud, S. M. Hasan ; Miao, Kebin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-51ae4cac291d760e431ce0ecf9409ff15a060831dcdc549af37ce93165ba4a9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annotations</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Feature maps</topic><topic>Image classification</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yongsheng</creatorcontrib><creatorcontrib>Chen, Wenyu</creatorcontrib><creatorcontrib>Qu, Hong</creatorcontrib><creatorcontrib>Mahmud, S. M. Hasan</creatorcontrib><creatorcontrib>Miao, Kebin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yongsheng</au><au>Chen, Wenyu</au><au>Qu, Hong</au><au>Mahmud, S. M. Hasan</au><au>Miao, Kebin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial division networks for weakly supervised detection</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>33</volume><issue>10</issue><spage>4965</spage><epage>4978</epage><pages>4965-4978</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>With only global image-level annotations, weakly supervised learning of deep convolutional neural networks has shown enough capacity in classification and localization but lack of ability to present the detection explicitly. In this work, we propose a novel spatial division network, which is applied to detect bounding boxes only with weak supervision. The essence of our model is two innovative differentiable modules, determination network and parameterized division, which perform the spatial division in feature maps of classification networks. After training, the learned parameters of the spatial division would correspond to a set of predicted bounding box coordinates. To demonstrate the effectiveness of our model for multi-label classification and weakly supervised detection, we conduct extensive experiments on the multi-MNIST dataset. Experimental results show our spatial division networks can (1) help improve the accuracy of multi-label classification, (2) implement in an end-to-end way only with the image-level annotations, and (3) output accurate bounding box coordinate, thereby achieving multi-digits detection.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-020-05257-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6114-3441</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2021-05, Vol.33 (10), p.4965-4978 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2518857822 |
source | Springer Nature - Complete Springer Journals |
subjects | Annotations Artificial Intelligence Artificial neural networks Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Feature maps Image classification Image Processing and Computer Vision Original Article Probability and Statistics in Computer Science |
title | Spatial division networks for weakly supervised detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20division%20networks%20for%20weakly%20supervised%20detection&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Liu,%20Yongsheng&rft.date=2021-05-01&rft.volume=33&rft.issue=10&rft.spage=4965&rft.epage=4978&rft.pages=4965-4978&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-020-05257-z&rft_dat=%3Cproquest_cross%3E2518857822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518857822&rft_id=info:pmid/&rfr_iscdi=true |