Structures of bulk hexagonal post transition metal chalcogenides from dispersion-corrected density functional theory
We use dispersion-corrected density functional theory to determine the relative energies of competing polytypes of bulk layered hexagonal post transition metal chalcogenides to search for the most stable structures of these potentially technologically important semiconductors. We show that there is...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2021-03, Vol.103 (9), p.1, Article 094118 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 103 |
creator | Magorrian, S. J. Zólyomi, V. Drummond, N. D. |
description | We use dispersion-corrected density functional theory to determine the relative energies of competing polytypes of bulk layered hexagonal post transition metal chalcogenides to search for the most stable structures of these potentially technologically important semiconductors. We show that there is some degree of consensus among dispersion-corrected exchange-correlation functionals regarding the energetic orderings of polytypes, but we find that for each material there are multiple stacking orders with relative energies of less than 1 meV per monolayer unit cell, implying that stacking faults are expected to be abundant in all post transition metal chalcogenides. By fitting a simple model to all our energy data, we predict that the most stable hexagonal structure has the P 63/ m m c space group in each case but that the stacking order differs between GaS, GaSe, GaTe, and InS, on the one hand, and InSe and InTe, on the other. At zero pressure, the relative energies obtained with different functionals disagree by around 1–5 meV per monolayer unit cell, which is not sufficient to identify the most stable structure unambiguously; however, multigigapascal pressures reduce the number of competing phases significantly. At higher pressures, an AB ′ -stacked structure of the most stable monolayer polytype is found to be the most stable bulk structure. |
doi_str_mv | 10.1103/PhysRevB.103.094118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518777928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518777928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-f5d1e222aad6344c6abf054c963daa575af0dcf66bc45c06e6a7aa04134b909f3</originalsourceid><addsrcrecordid>eNo9kElPwzAQhS0EEhX0F3CxxDnFW5z6CBWbVAnEco4mXpqUNg62g8i_J1GB08wbvW_09BC6oGRBKeFXz_UQX-zXzWIUC6IEpcsjNGNCqkwpqY7_95yconmMW0IIlUQVRM1Qek2h16kPNmLvcNXvPnBtv2HjW9jhzseEU4A2NqnxLd7bNF51DTvtN7ZtzEi54PfYNLGzIY6eTPsQrE7WYGMnbsCub_WEj2iqrQ_DOTpxsIt2_jvP0Pvd7dvqIVs_3T-urteZ5oylzOWGWsYYgJFcCC2hciQXWkluAPIiB0eMdlJWWuSaSCuhACCCclEpohw_Q5eHv13wn72Nqdz6Pow5YslyuiyKQrHl6OIHlw4-xmBd2YVmD2EoKSmnhsu_hstJHBrmP7uBdGU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518777928</pqid></control><display><type>article</type><title>Structures of bulk hexagonal post transition metal chalcogenides from dispersion-corrected density functional theory</title><source>American Physical Society Journals</source><creator>Magorrian, S. J. ; Zólyomi, V. ; Drummond, N. D.</creator><creatorcontrib>Magorrian, S. J. ; Zólyomi, V. ; Drummond, N. D.</creatorcontrib><description>We use dispersion-corrected density functional theory to determine the relative energies of competing polytypes of bulk layered hexagonal post transition metal chalcogenides to search for the most stable structures of these potentially technologically important semiconductors. We show that there is some degree of consensus among dispersion-corrected exchange-correlation functionals regarding the energetic orderings of polytypes, but we find that for each material there are multiple stacking orders with relative energies of less than 1 meV per monolayer unit cell, implying that stacking faults are expected to be abundant in all post transition metal chalcogenides. By fitting a simple model to all our energy data, we predict that the most stable hexagonal structure has the P 63/ m m c space group in each case but that the stacking order differs between GaS, GaSe, GaTe, and InS, on the one hand, and InSe and InTe, on the other. At zero pressure, the relative energies obtained with different functionals disagree by around 1–5 meV per monolayer unit cell, which is not sufficient to identify the most stable structure unambiguously; however, multigigapascal pressures reduce the number of competing phases significantly. At higher pressures, an AB ′ -stacked structure of the most stable monolayer polytype is found to be the most stable bulk structure.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.103.094118</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Bulk density ; Chalcogenides ; Density functional theory ; Dispersion ; Monolayers ; Polytypes ; Stacking faults ; Transition metal compounds ; Unit cell</subject><ispartof>Physical review. B, 2021-03, Vol.103 (9), p.1, Article 094118</ispartof><rights>Copyright American Physical Society Mar 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-f5d1e222aad6344c6abf054c963daa575af0dcf66bc45c06e6a7aa04134b909f3</citedby><cites>FETCH-LOGICAL-c322t-f5d1e222aad6344c6abf054c963daa575af0dcf66bc45c06e6a7aa04134b909f3</cites><orcidid>0000-0002-5727-9722 ; 0000-0003-0128-9523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Magorrian, S. J.</creatorcontrib><creatorcontrib>Zólyomi, V.</creatorcontrib><creatorcontrib>Drummond, N. D.</creatorcontrib><title>Structures of bulk hexagonal post transition metal chalcogenides from dispersion-corrected density functional theory</title><title>Physical review. B</title><description>We use dispersion-corrected density functional theory to determine the relative energies of competing polytypes of bulk layered hexagonal post transition metal chalcogenides to search for the most stable structures of these potentially technologically important semiconductors. We show that there is some degree of consensus among dispersion-corrected exchange-correlation functionals regarding the energetic orderings of polytypes, but we find that for each material there are multiple stacking orders with relative energies of less than 1 meV per monolayer unit cell, implying that stacking faults are expected to be abundant in all post transition metal chalcogenides. By fitting a simple model to all our energy data, we predict that the most stable hexagonal structure has the P 63/ m m c space group in each case but that the stacking order differs between GaS, GaSe, GaTe, and InS, on the one hand, and InSe and InTe, on the other. At zero pressure, the relative energies obtained with different functionals disagree by around 1–5 meV per monolayer unit cell, which is not sufficient to identify the most stable structure unambiguously; however, multigigapascal pressures reduce the number of competing phases significantly. At higher pressures, an AB ′ -stacked structure of the most stable monolayer polytype is found to be the most stable bulk structure.</description><subject>Bulk density</subject><subject>Chalcogenides</subject><subject>Density functional theory</subject><subject>Dispersion</subject><subject>Monolayers</subject><subject>Polytypes</subject><subject>Stacking faults</subject><subject>Transition metal compounds</subject><subject>Unit cell</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kElPwzAQhS0EEhX0F3CxxDnFW5z6CBWbVAnEco4mXpqUNg62g8i_J1GB08wbvW_09BC6oGRBKeFXz_UQX-zXzWIUC6IEpcsjNGNCqkwpqY7_95yconmMW0IIlUQVRM1Qek2h16kPNmLvcNXvPnBtv2HjW9jhzseEU4A2NqnxLd7bNF51DTvtN7ZtzEi54PfYNLGzIY6eTPsQrE7WYGMnbsCub_WEj2iqrQ_DOTpxsIt2_jvP0Pvd7dvqIVs_3T-urteZ5oylzOWGWsYYgJFcCC2hciQXWkluAPIiB0eMdlJWWuSaSCuhACCCclEpohw_Q5eHv13wn72Nqdz6Pow5YslyuiyKQrHl6OIHlw4-xmBd2YVmD2EoKSmnhsu_hstJHBrmP7uBdGU</recordid><startdate>20210331</startdate><enddate>20210331</enddate><creator>Magorrian, S. J.</creator><creator>Zólyomi, V.</creator><creator>Drummond, N. D.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5727-9722</orcidid><orcidid>https://orcid.org/0000-0003-0128-9523</orcidid></search><sort><creationdate>20210331</creationdate><title>Structures of bulk hexagonal post transition metal chalcogenides from dispersion-corrected density functional theory</title><author>Magorrian, S. J. ; Zólyomi, V. ; Drummond, N. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-f5d1e222aad6344c6abf054c963daa575af0dcf66bc45c06e6a7aa04134b909f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bulk density</topic><topic>Chalcogenides</topic><topic>Density functional theory</topic><topic>Dispersion</topic><topic>Monolayers</topic><topic>Polytypes</topic><topic>Stacking faults</topic><topic>Transition metal compounds</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magorrian, S. J.</creatorcontrib><creatorcontrib>Zólyomi, V.</creatorcontrib><creatorcontrib>Drummond, N. D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magorrian, S. J.</au><au>Zólyomi, V.</au><au>Drummond, N. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structures of bulk hexagonal post transition metal chalcogenides from dispersion-corrected density functional theory</atitle><jtitle>Physical review. B</jtitle><date>2021-03-31</date><risdate>2021</risdate><volume>103</volume><issue>9</issue><spage>1</spage><pages>1-</pages><artnum>094118</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We use dispersion-corrected density functional theory to determine the relative energies of competing polytypes of bulk layered hexagonal post transition metal chalcogenides to search for the most stable structures of these potentially technologically important semiconductors. We show that there is some degree of consensus among dispersion-corrected exchange-correlation functionals regarding the energetic orderings of polytypes, but we find that for each material there are multiple stacking orders with relative energies of less than 1 meV per monolayer unit cell, implying that stacking faults are expected to be abundant in all post transition metal chalcogenides. By fitting a simple model to all our energy data, we predict that the most stable hexagonal structure has the P 63/ m m c space group in each case but that the stacking order differs between GaS, GaSe, GaTe, and InS, on the one hand, and InSe and InTe, on the other. At zero pressure, the relative energies obtained with different functionals disagree by around 1–5 meV per monolayer unit cell, which is not sufficient to identify the most stable structure unambiguously; however, multigigapascal pressures reduce the number of competing phases significantly. At higher pressures, an AB ′ -stacked structure of the most stable monolayer polytype is found to be the most stable bulk structure.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.103.094118</doi><orcidid>https://orcid.org/0000-0002-5727-9722</orcidid><orcidid>https://orcid.org/0000-0003-0128-9523</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2021-03, Vol.103 (9), p.1, Article 094118 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2518777928 |
source | American Physical Society Journals |
subjects | Bulk density Chalcogenides Density functional theory Dispersion Monolayers Polytypes Stacking faults Transition metal compounds Unit cell |
title | Structures of bulk hexagonal post transition metal chalcogenides from dispersion-corrected density functional theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structures%20of%20bulk%20hexagonal%20post%20transition%20metal%20chalcogenides%20from%20dispersion-corrected%20density%20functional%20theory&rft.jtitle=Physical%20review.%20B&rft.au=Magorrian,%20S.%20J.&rft.date=2021-03-31&rft.volume=103&rft.issue=9&rft.spage=1&rft.pages=1-&rft.artnum=094118&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.103.094118&rft_dat=%3Cproquest_cross%3E2518777928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518777928&rft_id=info:pmid/&rfr_iscdi=true |