Enhanced performance of carbon-coated manganese catalysts derived from metal-organic framework for rechargeable zinc-air batteries

The wide structural versatility of the Metal-Organic Framework (MOF) is considered to be potential catalysts. In this work, [Mn (BDC). nDMF]n was synthesized by the reaction of 1,4-benzene dicarboxylic acid (1,4-BDC) with Manganese (II) nitrate using a solvothermal method. The [Mn (BDC). nDMF]n crys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2021-02, Vol.408, p.126786, Article 126786
Hauptverfasser: Ahmed, Sheraz, Shim, Joongpyo, Sun, Ho-Jung, Park, Gyungse
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 126786
container_title Surface & coatings technology
container_volume 408
creator Ahmed, Sheraz
Shim, Joongpyo
Sun, Ho-Jung
Park, Gyungse
description The wide structural versatility of the Metal-Organic Framework (MOF) is considered to be potential catalysts. In this work, [Mn (BDC). nDMF]n was synthesized by the reaction of 1,4-benzene dicarboxylic acid (1,4-BDC) with Manganese (II) nitrate using a solvothermal method. The [Mn (BDC). nDMF]n crystals were calcined for 2 h to produce Mn-MOF derived catalysts (C@MnO catalysts). The formation of MnO crystals was investigated by the X-ray diffraction (XRD) and the Raman Spectroscopy analyzed the graphitization. The resulting catalysts, C@MnO are highly porous with a high specific surface area of 291.62 m2/g at 700 °C. After calcination, Ni deposition was performed, to produce Ni@C@MnO on which Ni-atoms are deposited on the surface of MnO. The surface area reduces to 214.09 m2/g at 700 °C and the structure is distorted due to deposition. Numerous characterization techniques, including XRD, SEM, EDS, TGA, and Raman, strongly support the effective incorporation of Mn and Ni into the material frameworks. When applied as a cathode for Zinc-air battery, the Ni@C@MnO electrode delivered a high current density of 0.206 Acm−2 for the OER. The cyclic test for charging-discharging was performed for 152 cycles revealing a potential catalyst, having splendid stability for the OER and ORR. [Display omitted] •Fabrication of carbon-coated manganese (C@MnO) catalysts by solvothermal method•Nickel deposition on C@MnO catalysts•Improved catalytic performance for the oxygen reduction and evolution reactions
doi_str_mv 10.1016/j.surfcoat.2020.126786
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518777612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897220314560</els_id><sourcerecordid>2518777612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-1a172d90a37933b9b81664633727a2934cc9a707dc180d7c8fd0eacb1a245df63</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOF5eQQKuO-bSSdqdIt5AcKPrcJqeasZpM550FF365KaMrl2F_Oc_X8jH2IkUcymkOVvO04Y6H2GcK6FyqIytzA6bycrWhdal3WUzoRa2qGqr9tlBSkshhLR1OWPfV8MLDB5bvkbqIvXThceOe6AmDsWEzcMcP8OACXM-wuozjYm3SOE9zzqKPe8xx0Wk3Ao-R9DjR6RXnpGc0L8APSM0K-RfYfAFBOINjGMmYDpiex2sEh7_nofs6frq8fK2uH-4ubu8uC-8LsVYSJBWtbUAbWutm7qppDGl0doqC6rWpfc1WGFbLyvRWl91rUDwjQRVLtrO6EN2uuWuKb5tMI1uGTc05CedWmRX1hqpcstsW55iSoSdW1PogT6dFG7y7Zbuz7ebfLut77x4vl3E_If3gOSSDzipDVnA6NoY_kP8AF6Mj08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518777612</pqid></control><display><type>article</type><title>Enhanced performance of carbon-coated manganese catalysts derived from metal-organic framework for rechargeable zinc-air batteries</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ahmed, Sheraz ; Shim, Joongpyo ; Sun, Ho-Jung ; Park, Gyungse</creator><creatorcontrib>Ahmed, Sheraz ; Shim, Joongpyo ; Sun, Ho-Jung ; Park, Gyungse</creatorcontrib><description>The wide structural versatility of the Metal-Organic Framework (MOF) is considered to be potential catalysts. In this work, [Mn (BDC). nDMF]n was synthesized by the reaction of 1,4-benzene dicarboxylic acid (1,4-BDC) with Manganese (II) nitrate using a solvothermal method. The [Mn (BDC). nDMF]n crystals were calcined for 2 h to produce Mn-MOF derived catalysts (C@MnO catalysts). The formation of MnO crystals was investigated by the X-ray diffraction (XRD) and the Raman Spectroscopy analyzed the graphitization. The resulting catalysts, C@MnO are highly porous with a high specific surface area of 291.62 m2/g at 700 °C. After calcination, Ni deposition was performed, to produce Ni@C@MnO on which Ni-atoms are deposited on the surface of MnO. The surface area reduces to 214.09 m2/g at 700 °C and the structure is distorted due to deposition. Numerous characterization techniques, including XRD, SEM, EDS, TGA, and Raman, strongly support the effective incorporation of Mn and Ni into the material frameworks. When applied as a cathode for Zinc-air battery, the Ni@C@MnO electrode delivered a high current density of 0.206 Acm−2 for the OER. The cyclic test for charging-discharging was performed for 152 cycles revealing a potential catalyst, having splendid stability for the OER and ORR. [Display omitted] •Fabrication of carbon-coated manganese (C@MnO) catalysts by solvothermal method•Nickel deposition on C@MnO catalysts•Improved catalytic performance for the oxygen reduction and evolution reactions</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2020.126786</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Benzene ; Calcination ; Catalysts ; Charging ; Chemical synthesis ; Cyclic testing ; Deposition ; Dicarboxylic acids ; Graphitization ; Manganese oxides ; Metal air batteries ; Metal-organic framework ; Metal-organic frameworks ; Nickel ; Raman spectroscopy ; Rechargeable batteries ; Roasting ; Surface area ; X-ray diffraction ; Zinc-air battery ; Zinc-oxygen batteries</subject><ispartof>Surface &amp; coatings technology, 2021-02, Vol.408, p.126786, Article 126786</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 25, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-1a172d90a37933b9b81664633727a2934cc9a707dc180d7c8fd0eacb1a245df63</citedby><cites>FETCH-LOGICAL-c340t-1a172d90a37933b9b81664633727a2934cc9a707dc180d7c8fd0eacb1a245df63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2020.126786$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ahmed, Sheraz</creatorcontrib><creatorcontrib>Shim, Joongpyo</creatorcontrib><creatorcontrib>Sun, Ho-Jung</creatorcontrib><creatorcontrib>Park, Gyungse</creatorcontrib><title>Enhanced performance of carbon-coated manganese catalysts derived from metal-organic framework for rechargeable zinc-air batteries</title><title>Surface &amp; coatings technology</title><description>The wide structural versatility of the Metal-Organic Framework (MOF) is considered to be potential catalysts. In this work, [Mn (BDC). nDMF]n was synthesized by the reaction of 1,4-benzene dicarboxylic acid (1,4-BDC) with Manganese (II) nitrate using a solvothermal method. The [Mn (BDC). nDMF]n crystals were calcined for 2 h to produce Mn-MOF derived catalysts (C@MnO catalysts). The formation of MnO crystals was investigated by the X-ray diffraction (XRD) and the Raman Spectroscopy analyzed the graphitization. The resulting catalysts, C@MnO are highly porous with a high specific surface area of 291.62 m2/g at 700 °C. After calcination, Ni deposition was performed, to produce Ni@C@MnO on which Ni-atoms are deposited on the surface of MnO. The surface area reduces to 214.09 m2/g at 700 °C and the structure is distorted due to deposition. Numerous characterization techniques, including XRD, SEM, EDS, TGA, and Raman, strongly support the effective incorporation of Mn and Ni into the material frameworks. When applied as a cathode for Zinc-air battery, the Ni@C@MnO electrode delivered a high current density of 0.206 Acm−2 for the OER. The cyclic test for charging-discharging was performed for 152 cycles revealing a potential catalyst, having splendid stability for the OER and ORR. [Display omitted] •Fabrication of carbon-coated manganese (C@MnO) catalysts by solvothermal method•Nickel deposition on C@MnO catalysts•Improved catalytic performance for the oxygen reduction and evolution reactions</description><subject>Benzene</subject><subject>Calcination</subject><subject>Catalysts</subject><subject>Charging</subject><subject>Chemical synthesis</subject><subject>Cyclic testing</subject><subject>Deposition</subject><subject>Dicarboxylic acids</subject><subject>Graphitization</subject><subject>Manganese oxides</subject><subject>Metal air batteries</subject><subject>Metal-organic framework</subject><subject>Metal-organic frameworks</subject><subject>Nickel</subject><subject>Raman spectroscopy</subject><subject>Rechargeable batteries</subject><subject>Roasting</subject><subject>Surface area</subject><subject>X-ray diffraction</subject><subject>Zinc-air battery</subject><subject>Zinc-oxygen batteries</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOF5eQQKuO-bSSdqdIt5AcKPrcJqeasZpM550FF365KaMrl2F_Oc_X8jH2IkUcymkOVvO04Y6H2GcK6FyqIytzA6bycrWhdal3WUzoRa2qGqr9tlBSkshhLR1OWPfV8MLDB5bvkbqIvXThceOe6AmDsWEzcMcP8OACXM-wuozjYm3SOE9zzqKPe8xx0Wk3Ao-R9DjR6RXnpGc0L8APSM0K-RfYfAFBOINjGMmYDpiex2sEh7_nofs6frq8fK2uH-4ubu8uC-8LsVYSJBWtbUAbWutm7qppDGl0doqC6rWpfc1WGFbLyvRWl91rUDwjQRVLtrO6EN2uuWuKb5tMI1uGTc05CedWmRX1hqpcstsW55iSoSdW1PogT6dFG7y7Zbuz7ebfLut77x4vl3E_If3gOSSDzipDVnA6NoY_kP8AF6Mj08</recordid><startdate>20210225</startdate><enddate>20210225</enddate><creator>Ahmed, Sheraz</creator><creator>Shim, Joongpyo</creator><creator>Sun, Ho-Jung</creator><creator>Park, Gyungse</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210225</creationdate><title>Enhanced performance of carbon-coated manganese catalysts derived from metal-organic framework for rechargeable zinc-air batteries</title><author>Ahmed, Sheraz ; Shim, Joongpyo ; Sun, Ho-Jung ; Park, Gyungse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-1a172d90a37933b9b81664633727a2934cc9a707dc180d7c8fd0eacb1a245df63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Benzene</topic><topic>Calcination</topic><topic>Catalysts</topic><topic>Charging</topic><topic>Chemical synthesis</topic><topic>Cyclic testing</topic><topic>Deposition</topic><topic>Dicarboxylic acids</topic><topic>Graphitization</topic><topic>Manganese oxides</topic><topic>Metal air batteries</topic><topic>Metal-organic framework</topic><topic>Metal-organic frameworks</topic><topic>Nickel</topic><topic>Raman spectroscopy</topic><topic>Rechargeable batteries</topic><topic>Roasting</topic><topic>Surface area</topic><topic>X-ray diffraction</topic><topic>Zinc-air battery</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Sheraz</creatorcontrib><creatorcontrib>Shim, Joongpyo</creatorcontrib><creatorcontrib>Sun, Ho-Jung</creatorcontrib><creatorcontrib>Park, Gyungse</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Sheraz</au><au>Shim, Joongpyo</au><au>Sun, Ho-Jung</au><au>Park, Gyungse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced performance of carbon-coated manganese catalysts derived from metal-organic framework for rechargeable zinc-air batteries</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2021-02-25</date><risdate>2021</risdate><volume>408</volume><spage>126786</spage><pages>126786-</pages><artnum>126786</artnum><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>The wide structural versatility of the Metal-Organic Framework (MOF) is considered to be potential catalysts. In this work, [Mn (BDC). nDMF]n was synthesized by the reaction of 1,4-benzene dicarboxylic acid (1,4-BDC) with Manganese (II) nitrate using a solvothermal method. The [Mn (BDC). nDMF]n crystals were calcined for 2 h to produce Mn-MOF derived catalysts (C@MnO catalysts). The formation of MnO crystals was investigated by the X-ray diffraction (XRD) and the Raman Spectroscopy analyzed the graphitization. The resulting catalysts, C@MnO are highly porous with a high specific surface area of 291.62 m2/g at 700 °C. After calcination, Ni deposition was performed, to produce Ni@C@MnO on which Ni-atoms are deposited on the surface of MnO. The surface area reduces to 214.09 m2/g at 700 °C and the structure is distorted due to deposition. Numerous characterization techniques, including XRD, SEM, EDS, TGA, and Raman, strongly support the effective incorporation of Mn and Ni into the material frameworks. When applied as a cathode for Zinc-air battery, the Ni@C@MnO electrode delivered a high current density of 0.206 Acm−2 for the OER. The cyclic test for charging-discharging was performed for 152 cycles revealing a potential catalyst, having splendid stability for the OER and ORR. [Display omitted] •Fabrication of carbon-coated manganese (C@MnO) catalysts by solvothermal method•Nickel deposition on C@MnO catalysts•Improved catalytic performance for the oxygen reduction and evolution reactions</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2020.126786</doi></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2021-02, Vol.408, p.126786, Article 126786
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_journals_2518777612
source Elsevier ScienceDirect Journals Complete
subjects Benzene
Calcination
Catalysts
Charging
Chemical synthesis
Cyclic testing
Deposition
Dicarboxylic acids
Graphitization
Manganese oxides
Metal air batteries
Metal-organic framework
Metal-organic frameworks
Nickel
Raman spectroscopy
Rechargeable batteries
Roasting
Surface area
X-ray diffraction
Zinc-air battery
Zinc-oxygen batteries
title Enhanced performance of carbon-coated manganese catalysts derived from metal-organic framework for rechargeable zinc-air batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20performance%20of%20carbon-coated%20manganese%20catalysts%20derived%20from%20metal-organic%20framework%20for%20rechargeable%20zinc-air%20batteries&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Ahmed,%20Sheraz&rft.date=2021-02-25&rft.volume=408&rft.spage=126786&rft.pages=126786-&rft.artnum=126786&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2020.126786&rft_dat=%3Cproquest_cross%3E2518777612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518777612&rft_id=info:pmid/&rft_els_id=S0257897220314560&rfr_iscdi=true