A three-phase model for simulation of heat transfer and melt pool behaviour in laser powder bed fusion process

Laser powder bed fusion (LPBF) is one of the most promising additive manufacturing technologies to fabricate high quality metal parts. In this work, a three-phase model based on the volume of fluid (VOF) is employed to investigate the heat transfer and melt pool behaviour in LPBF. Surface tension, M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2021-03, Vol.381, p.298-312
Hauptverfasser: Li, E.L., Wang, L., Yu, A.B., Zhou, Z.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 312
container_issue
container_start_page 298
container_title Powder technology
container_volume 381
creator Li, E.L.
Wang, L.
Yu, A.B.
Zhou, Z.Y.
description Laser powder bed fusion (LPBF) is one of the most promising additive manufacturing technologies to fabricate high quality metal parts. In this work, a three-phase model based on the volume of fluid (VOF) is employed to investigate the heat transfer and melt pool behaviour in LPBF. Surface tension, Marangoni effect and recoil pressure are implemented in the model, and heat adsorption, reflection and transmission are fully considered. The results show that the melt pool dimension and its shape are controlled by laser power and scanning speed. Metal powders at the bottom layers may be not fully melted, and for larger layer thickness of the powder bed, porosities caused by the trapped gas can form. The gas originated from bulk powders can dissolve, coalesce, and be squeezed in the melt pool. It is demonstrated that the model can capture the main features of powder melting and solidification in LPBF process. [Display omitted] •Melt pool dynamics in powder bed fusion process is investigated mathematically.•A deeper depression region is produced by considering multiple reflection.•Porosities caused by the trapped gas can form for larger depth powder bed.•Gas originated from bulk powders can dissolve, coalesce, and be squeezed in melt pool.
doi_str_mv 10.1016/j.powtec.2020.11.061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518776787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591020311207</els_id><sourcerecordid>2518776787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ab087b59137d8bee4434fc8932e6b2c615272a58ff76b5571ae15f770c315a1e3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxcB1x3zaJvORhgGXzDgRsFdSNMbmtI2NUlH_PdmqGtXBy73nHvuh9AtJRtKaHnfbSb3HUFvGGFpRDekpGdoRSvBM86qz3O0IoSzrNhScomuQugIISWnZIXGHY6tB8imVgXAg2ugx8Z5HOww9ypaN2JncAsq4ujVGAx4rMYGD9BHPDnX4xpadbRu9tiOuE8pPs2_myQ1NNjM4ZQxeachhGt0YVQf4OZP1-jj6fF9_5Id3p5f97tDpjnPY6ZqUok61eWiqWqAPOe50dWWMyhrpktaMMFUURkjyrooBFVACyME0ZwWigJfo7slN939miFE2aWCYzopWZG4iFIkOGuUL1vauxA8GDl5Oyj_IymRJ7KykwtZeSIrKZWJbLI9LDZIHxwteBm0hVFDYz3oKBtn_w_4BfvxhIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518776787</pqid></control><display><type>article</type><title>A three-phase model for simulation of heat transfer and melt pool behaviour in laser powder bed fusion process</title><source>Elsevier ScienceDirect Journals</source><creator>Li, E.L. ; Wang, L. ; Yu, A.B. ; Zhou, Z.Y.</creator><creatorcontrib>Li, E.L. ; Wang, L. ; Yu, A.B. ; Zhou, Z.Y.</creatorcontrib><description>Laser powder bed fusion (LPBF) is one of the most promising additive manufacturing technologies to fabricate high quality metal parts. In this work, a three-phase model based on the volume of fluid (VOF) is employed to investigate the heat transfer and melt pool behaviour in LPBF. Surface tension, Marangoni effect and recoil pressure are implemented in the model, and heat adsorption, reflection and transmission are fully considered. The results show that the melt pool dimension and its shape are controlled by laser power and scanning speed. Metal powders at the bottom layers may be not fully melted, and for larger layer thickness of the powder bed, porosities caused by the trapped gas can form. The gas originated from bulk powders can dissolve, coalesce, and be squeezed in the melt pool. It is demonstrated that the model can capture the main features of powder melting and solidification in LPBF process. [Display omitted] •Melt pool dynamics in powder bed fusion process is investigated mathematically.•A deeper depression region is produced by considering multiple reflection.•Porosities caused by the trapped gas can form for larger depth powder bed.•Gas originated from bulk powders can dissolve, coalesce, and be squeezed in melt pool.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2020.11.061</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Heat transfer ; Laser powder bed fusion ; Lasers ; Marangoni convection ; Melt pool ; Melting ; Metal powders ; Porosity ; Powder ; Powder beds ; Pressure effects ; Rapid prototyping ; Recoil ; Solidification ; Surface tension ; Thickness ; VOF</subject><ispartof>Powder technology, 2021-03, Vol.381, p.298-312</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ab087b59137d8bee4434fc8932e6b2c615272a58ff76b5571ae15f770c315a1e3</citedby><cites>FETCH-LOGICAL-c334t-ab087b59137d8bee4434fc8932e6b2c615272a58ff76b5571ae15f770c315a1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0032591020311207$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Li, E.L.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Yu, A.B.</creatorcontrib><creatorcontrib>Zhou, Z.Y.</creatorcontrib><title>A three-phase model for simulation of heat transfer and melt pool behaviour in laser powder bed fusion process</title><title>Powder technology</title><description>Laser powder bed fusion (LPBF) is one of the most promising additive manufacturing technologies to fabricate high quality metal parts. In this work, a three-phase model based on the volume of fluid (VOF) is employed to investigate the heat transfer and melt pool behaviour in LPBF. Surface tension, Marangoni effect and recoil pressure are implemented in the model, and heat adsorption, reflection and transmission are fully considered. The results show that the melt pool dimension and its shape are controlled by laser power and scanning speed. Metal powders at the bottom layers may be not fully melted, and for larger layer thickness of the powder bed, porosities caused by the trapped gas can form. The gas originated from bulk powders can dissolve, coalesce, and be squeezed in the melt pool. It is demonstrated that the model can capture the main features of powder melting and solidification in LPBF process. [Display omitted] •Melt pool dynamics in powder bed fusion process is investigated mathematically.•A deeper depression region is produced by considering multiple reflection.•Porosities caused by the trapped gas can form for larger depth powder bed.•Gas originated from bulk powders can dissolve, coalesce, and be squeezed in melt pool.</description><subject>Heat transfer</subject><subject>Laser powder bed fusion</subject><subject>Lasers</subject><subject>Marangoni convection</subject><subject>Melt pool</subject><subject>Melting</subject><subject>Metal powders</subject><subject>Porosity</subject><subject>Powder</subject><subject>Powder beds</subject><subject>Pressure effects</subject><subject>Rapid prototyping</subject><subject>Recoil</subject><subject>Solidification</subject><subject>Surface tension</subject><subject>Thickness</subject><subject>VOF</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AxcB1x3zaJvORhgGXzDgRsFdSNMbmtI2NUlH_PdmqGtXBy73nHvuh9AtJRtKaHnfbSb3HUFvGGFpRDekpGdoRSvBM86qz3O0IoSzrNhScomuQugIISWnZIXGHY6tB8imVgXAg2ugx8Z5HOww9ypaN2JncAsq4ujVGAx4rMYGD9BHPDnX4xpadbRu9tiOuE8pPs2_myQ1NNjM4ZQxeachhGt0YVQf4OZP1-jj6fF9_5Id3p5f97tDpjnPY6ZqUok61eWiqWqAPOe50dWWMyhrpktaMMFUURkjyrooBFVACyME0ZwWigJfo7slN939miFE2aWCYzopWZG4iFIkOGuUL1vauxA8GDl5Oyj_IymRJ7KykwtZeSIrKZWJbLI9LDZIHxwteBm0hVFDYz3oKBtn_w_4BfvxhIQ</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Li, E.L.</creator><creator>Wang, L.</creator><creator>Yu, A.B.</creator><creator>Zhou, Z.Y.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope></search><sort><creationdate>202103</creationdate><title>A three-phase model for simulation of heat transfer and melt pool behaviour in laser powder bed fusion process</title><author>Li, E.L. ; Wang, L. ; Yu, A.B. ; Zhou, Z.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ab087b59137d8bee4434fc8932e6b2c615272a58ff76b5571ae15f770c315a1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Heat transfer</topic><topic>Laser powder bed fusion</topic><topic>Lasers</topic><topic>Marangoni convection</topic><topic>Melt pool</topic><topic>Melting</topic><topic>Metal powders</topic><topic>Porosity</topic><topic>Powder</topic><topic>Powder beds</topic><topic>Pressure effects</topic><topic>Rapid prototyping</topic><topic>Recoil</topic><topic>Solidification</topic><topic>Surface tension</topic><topic>Thickness</topic><topic>VOF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, E.L.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Yu, A.B.</creatorcontrib><creatorcontrib>Zhou, Z.Y.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, E.L.</au><au>Wang, L.</au><au>Yu, A.B.</au><au>Zhou, Z.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A three-phase model for simulation of heat transfer and melt pool behaviour in laser powder bed fusion process</atitle><jtitle>Powder technology</jtitle><date>2021-03</date><risdate>2021</risdate><volume>381</volume><spage>298</spage><epage>312</epage><pages>298-312</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><abstract>Laser powder bed fusion (LPBF) is one of the most promising additive manufacturing technologies to fabricate high quality metal parts. In this work, a three-phase model based on the volume of fluid (VOF) is employed to investigate the heat transfer and melt pool behaviour in LPBF. Surface tension, Marangoni effect and recoil pressure are implemented in the model, and heat adsorption, reflection and transmission are fully considered. The results show that the melt pool dimension and its shape are controlled by laser power and scanning speed. Metal powders at the bottom layers may be not fully melted, and for larger layer thickness of the powder bed, porosities caused by the trapped gas can form. The gas originated from bulk powders can dissolve, coalesce, and be squeezed in the melt pool. It is demonstrated that the model can capture the main features of powder melting and solidification in LPBF process. [Display omitted] •Melt pool dynamics in powder bed fusion process is investigated mathematically.•A deeper depression region is produced by considering multiple reflection.•Porosities caused by the trapped gas can form for larger depth powder bed.•Gas originated from bulk powders can dissolve, coalesce, and be squeezed in melt pool.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2020.11.061</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-5910
ispartof Powder technology, 2021-03, Vol.381, p.298-312
issn 0032-5910
1873-328X
language eng
recordid cdi_proquest_journals_2518776787
source Elsevier ScienceDirect Journals
subjects Heat transfer
Laser powder bed fusion
Lasers
Marangoni convection
Melt pool
Melting
Metal powders
Porosity
Powder
Powder beds
Pressure effects
Rapid prototyping
Recoil
Solidification
Surface tension
Thickness
VOF
title A three-phase model for simulation of heat transfer and melt pool behaviour in laser powder bed fusion process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20three-phase%20model%20for%20simulation%20of%20heat%20transfer%20and%20melt%20pool%20behaviour%20in%20laser%20powder%20bed%20fusion%20process&rft.jtitle=Powder%20technology&rft.au=Li,%20E.L.&rft.date=2021-03&rft.volume=381&rft.spage=298&rft.epage=312&rft.pages=298-312&rft.issn=0032-5910&rft.eissn=1873-328X&rft_id=info:doi/10.1016/j.powtec.2020.11.061&rft_dat=%3Cproquest_cross%3E2518776787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518776787&rft_id=info:pmid/&rft_els_id=S0032591020311207&rfr_iscdi=true