Confinement and graded partition functions for N = 4 SYM
Gauge theories with confining phases at low temperatures tend to deconfine at high temperatures. In some cases, for example in supersymmetric theories, confinement can persist for all temperatures provided the partition function includes a grading by (−1)F. When it is possible to define partition fu...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2021-03, Vol.103 (6), p.1, Article 066013 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 103 |
creator | Cherman, Aleksey Dhumuntarao, Aditya |
description | Gauge theories with confining phases at low temperatures tend to deconfine at high temperatures. In some cases, for example in supersymmetric theories, confinement can persist for all temperatures provided the partition function includes a grading by (−1)F. When it is possible to define partition functions that smoothly interpolate between no grading and (−1)F grading, it is natural to ask if there are other choices of grading that have the same effect as (−1)F on confinement. We explore how this works for N=4 SYM on S1×S3 in the large N limit at both small and large coupling. We find evidence for a continuous range of grading parameters that preserve confinement for all temperatures at large coupling, while at small coupling only a discrete set of gradings preserves confinement. |
doi_str_mv | 10.1103/PhysRevD.103.066013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518776692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518776692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-c908e51ce46b43ee2cc7d653619fac00b598096b2668071da131ec775720e1cf3</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOIzzC9wEXLfem7RJs3Ah4xPGBz4WrkKaJtrBScekFebf22HU1f0OHM6Fj5BjhBwR-OnjxyY9ue-LfAw5CAHI98iEFRIyAKb2_xnhkMxSWsKIApREnJBq3gXfBrdyoacmNPQ9msY1dG1i3_ZtF6gfgt1Cor6L9J6e0YI-v90dkQNvPpOb_d4peb26fJnfZIuH69v5-SKzTMo-swoqV6J1hagL7hyzVjai5AKVNxagLlUFStRMiAokNgY5OitlKRk4tJ5Pycludx27r8GlXi-7IYbxpWYlVlIKodjY4ruWjV1K0Xm9ju3KxI1G0FtL-s-S3oadJf4DGadZpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518776692</pqid></control><display><type>article</type><title>Confinement and graded partition functions for N = 4 SYM</title><source>American Physical Society Journals</source><creator>Cherman, Aleksey ; Dhumuntarao, Aditya</creator><creatorcontrib>Cherman, Aleksey ; Dhumuntarao, Aditya</creatorcontrib><description>Gauge theories with confining phases at low temperatures tend to deconfine at high temperatures. In some cases, for example in supersymmetric theories, confinement can persist for all temperatures provided the partition function includes a grading by (−1)F. When it is possible to define partition functions that smoothly interpolate between no grading and (−1)F grading, it is natural to ask if there are other choices of grading that have the same effect as (−1)F on confinement. We explore how this works for N=4 SYM on S1×S3 in the large N limit at both small and large coupling. We find evidence for a continuous range of grading parameters that preserve confinement for all temperatures at large coupling, while at small coupling only a discrete set of gradings preserves confinement.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.103.066013</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Confinement ; Coupling ; Gauge theory ; Low temperature ; Partitions (mathematics)</subject><ispartof>Physical review. D, 2021-03, Vol.103 (6), p.1, Article 066013</ispartof><rights>Copyright American Physical Society Mar 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-c908e51ce46b43ee2cc7d653619fac00b598096b2668071da131ec775720e1cf3</citedby><cites>FETCH-LOGICAL-c277t-c908e51ce46b43ee2cc7d653619fac00b598096b2668071da131ec775720e1cf3</cites><orcidid>0000-0002-8683-4166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Cherman, Aleksey</creatorcontrib><creatorcontrib>Dhumuntarao, Aditya</creatorcontrib><title>Confinement and graded partition functions for N = 4 SYM</title><title>Physical review. D</title><description>Gauge theories with confining phases at low temperatures tend to deconfine at high temperatures. In some cases, for example in supersymmetric theories, confinement can persist for all temperatures provided the partition function includes a grading by (−1)F. When it is possible to define partition functions that smoothly interpolate between no grading and (−1)F grading, it is natural to ask if there are other choices of grading that have the same effect as (−1)F on confinement. We explore how this works for N=4 SYM on S1×S3 in the large N limit at both small and large coupling. We find evidence for a continuous range of grading parameters that preserve confinement for all temperatures at large coupling, while at small coupling only a discrete set of gradings preserves confinement.</description><subject>Confinement</subject><subject>Coupling</subject><subject>Gauge theory</subject><subject>Low temperature</subject><subject>Partitions (mathematics)</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOIzzC9wEXLfem7RJs3Ah4xPGBz4WrkKaJtrBScekFebf22HU1f0OHM6Fj5BjhBwR-OnjxyY9ue-LfAw5CAHI98iEFRIyAKb2_xnhkMxSWsKIApREnJBq3gXfBrdyoacmNPQ9msY1dG1i3_ZtF6gfgt1Cor6L9J6e0YI-v90dkQNvPpOb_d4peb26fJnfZIuH69v5-SKzTMo-swoqV6J1hagL7hyzVjai5AKVNxagLlUFStRMiAokNgY5OitlKRk4tJ5Pycludx27r8GlXi-7IYbxpWYlVlIKodjY4ruWjV1K0Xm9ju3KxI1G0FtL-s-S3oadJf4DGadZpw</recordid><startdate>20210319</startdate><enddate>20210319</enddate><creator>Cherman, Aleksey</creator><creator>Dhumuntarao, Aditya</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8683-4166</orcidid></search><sort><creationdate>20210319</creationdate><title>Confinement and graded partition functions for N = 4 SYM</title><author>Cherman, Aleksey ; Dhumuntarao, Aditya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-c908e51ce46b43ee2cc7d653619fac00b598096b2668071da131ec775720e1cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Confinement</topic><topic>Coupling</topic><topic>Gauge theory</topic><topic>Low temperature</topic><topic>Partitions (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherman, Aleksey</creatorcontrib><creatorcontrib>Dhumuntarao, Aditya</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherman, Aleksey</au><au>Dhumuntarao, Aditya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confinement and graded partition functions for N = 4 SYM</atitle><jtitle>Physical review. D</jtitle><date>2021-03-19</date><risdate>2021</risdate><volume>103</volume><issue>6</issue><spage>1</spage><pages>1-</pages><artnum>066013</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Gauge theories with confining phases at low temperatures tend to deconfine at high temperatures. In some cases, for example in supersymmetric theories, confinement can persist for all temperatures provided the partition function includes a grading by (−1)F. When it is possible to define partition functions that smoothly interpolate between no grading and (−1)F grading, it is natural to ask if there are other choices of grading that have the same effect as (−1)F on confinement. We explore how this works for N=4 SYM on S1×S3 in the large N limit at both small and large coupling. We find evidence for a continuous range of grading parameters that preserve confinement for all temperatures at large coupling, while at small coupling only a discrete set of gradings preserves confinement.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.103.066013</doi><orcidid>https://orcid.org/0000-0002-8683-4166</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2021-03, Vol.103 (6), p.1, Article 066013 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2518776692 |
source | American Physical Society Journals |
subjects | Confinement Coupling Gauge theory Low temperature Partitions (mathematics) |
title | Confinement and graded partition functions for N = 4 SYM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confinement%20and%20graded%20partition%20functions%20for%20N%20=%204%20SYM&rft.jtitle=Physical%20review.%20D&rft.au=Cherman,%20Aleksey&rft.date=2021-03-19&rft.volume=103&rft.issue=6&rft.spage=1&rft.pages=1-&rft.artnum=066013&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.103.066013&rft_dat=%3Cproquest_cross%3E2518776692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518776692&rft_id=info:pmid/&rfr_iscdi=true |