Confinement and graded partition functions for N = 4 SYM

Gauge theories with confining phases at low temperatures tend to deconfine at high temperatures. In some cases, for example in supersymmetric theories, confinement can persist for all temperatures provided the partition function includes a grading by (−1)F. When it is possible to define partition fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2021-03, Vol.103 (6), p.1, Article 066013
Hauptverfasser: Cherman, Aleksey, Dhumuntarao, Aditya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1
container_title Physical review. D
container_volume 103
creator Cherman, Aleksey
Dhumuntarao, Aditya
description Gauge theories with confining phases at low temperatures tend to deconfine at high temperatures. In some cases, for example in supersymmetric theories, confinement can persist for all temperatures provided the partition function includes a grading by (−1)F. When it is possible to define partition functions that smoothly interpolate between no grading and (−1)F grading, it is natural to ask if there are other choices of grading that have the same effect as (−1)F on confinement. We explore how this works for N=4 SYM on S1×S3 in the large N limit at both small and large coupling. We find evidence for a continuous range of grading parameters that preserve confinement for all temperatures at large coupling, while at small coupling only a discrete set of gradings preserves confinement.
doi_str_mv 10.1103/PhysRevD.103.066013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518776692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518776692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-c908e51ce46b43ee2cc7d653619fac00b598096b2668071da131ec775720e1cf3</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOIzzC9wEXLfem7RJs3Ah4xPGBz4WrkKaJtrBScekFebf22HU1f0OHM6Fj5BjhBwR-OnjxyY9ue-LfAw5CAHI98iEFRIyAKb2_xnhkMxSWsKIApREnJBq3gXfBrdyoacmNPQ9msY1dG1i3_ZtF6gfgt1Cor6L9J6e0YI-v90dkQNvPpOb_d4peb26fJnfZIuH69v5-SKzTMo-swoqV6J1hagL7hyzVjai5AKVNxagLlUFStRMiAokNgY5OitlKRk4tJ5Pycludx27r8GlXi-7IYbxpWYlVlIKodjY4ruWjV1K0Xm9ju3KxI1G0FtL-s-S3oadJf4DGadZpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518776692</pqid></control><display><type>article</type><title>Confinement and graded partition functions for N = 4 SYM</title><source>American Physical Society Journals</source><creator>Cherman, Aleksey ; Dhumuntarao, Aditya</creator><creatorcontrib>Cherman, Aleksey ; Dhumuntarao, Aditya</creatorcontrib><description>Gauge theories with confining phases at low temperatures tend to deconfine at high temperatures. In some cases, for example in supersymmetric theories, confinement can persist for all temperatures provided the partition function includes a grading by (−1)F. When it is possible to define partition functions that smoothly interpolate between no grading and (−1)F grading, it is natural to ask if there are other choices of grading that have the same effect as (−1)F on confinement. We explore how this works for N=4 SYM on S1×S3 in the large N limit at both small and large coupling. We find evidence for a continuous range of grading parameters that preserve confinement for all temperatures at large coupling, while at small coupling only a discrete set of gradings preserves confinement.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.103.066013</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Confinement ; Coupling ; Gauge theory ; Low temperature ; Partitions (mathematics)</subject><ispartof>Physical review. D, 2021-03, Vol.103 (6), p.1, Article 066013</ispartof><rights>Copyright American Physical Society Mar 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-c908e51ce46b43ee2cc7d653619fac00b598096b2668071da131ec775720e1cf3</citedby><cites>FETCH-LOGICAL-c277t-c908e51ce46b43ee2cc7d653619fac00b598096b2668071da131ec775720e1cf3</cites><orcidid>0000-0002-8683-4166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Cherman, Aleksey</creatorcontrib><creatorcontrib>Dhumuntarao, Aditya</creatorcontrib><title>Confinement and graded partition functions for N = 4 SYM</title><title>Physical review. D</title><description>Gauge theories with confining phases at low temperatures tend to deconfine at high temperatures. In some cases, for example in supersymmetric theories, confinement can persist for all temperatures provided the partition function includes a grading by (−1)F. When it is possible to define partition functions that smoothly interpolate between no grading and (−1)F grading, it is natural to ask if there are other choices of grading that have the same effect as (−1)F on confinement. We explore how this works for N=4 SYM on S1×S3 in the large N limit at both small and large coupling. We find evidence for a continuous range of grading parameters that preserve confinement for all temperatures at large coupling, while at small coupling only a discrete set of gradings preserves confinement.</description><subject>Confinement</subject><subject>Coupling</subject><subject>Gauge theory</subject><subject>Low temperature</subject><subject>Partitions (mathematics)</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOIzzC9wEXLfem7RJs3Ah4xPGBz4WrkKaJtrBScekFebf22HU1f0OHM6Fj5BjhBwR-OnjxyY9ue-LfAw5CAHI98iEFRIyAKb2_xnhkMxSWsKIApREnJBq3gXfBrdyoacmNPQ9msY1dG1i3_ZtF6gfgt1Cor6L9J6e0YI-v90dkQNvPpOb_d4peb26fJnfZIuH69v5-SKzTMo-swoqV6J1hagL7hyzVjai5AKVNxagLlUFStRMiAokNgY5OitlKRk4tJ5Pycludx27r8GlXi-7IYbxpWYlVlIKodjY4ruWjV1K0Xm9ju3KxI1G0FtL-s-S3oadJf4DGadZpw</recordid><startdate>20210319</startdate><enddate>20210319</enddate><creator>Cherman, Aleksey</creator><creator>Dhumuntarao, Aditya</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8683-4166</orcidid></search><sort><creationdate>20210319</creationdate><title>Confinement and graded partition functions for N = 4 SYM</title><author>Cherman, Aleksey ; Dhumuntarao, Aditya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-c908e51ce46b43ee2cc7d653619fac00b598096b2668071da131ec775720e1cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Confinement</topic><topic>Coupling</topic><topic>Gauge theory</topic><topic>Low temperature</topic><topic>Partitions (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherman, Aleksey</creatorcontrib><creatorcontrib>Dhumuntarao, Aditya</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherman, Aleksey</au><au>Dhumuntarao, Aditya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confinement and graded partition functions for N = 4 SYM</atitle><jtitle>Physical review. D</jtitle><date>2021-03-19</date><risdate>2021</risdate><volume>103</volume><issue>6</issue><spage>1</spage><pages>1-</pages><artnum>066013</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Gauge theories with confining phases at low temperatures tend to deconfine at high temperatures. In some cases, for example in supersymmetric theories, confinement can persist for all temperatures provided the partition function includes a grading by (−1)F. When it is possible to define partition functions that smoothly interpolate between no grading and (−1)F grading, it is natural to ask if there are other choices of grading that have the same effect as (−1)F on confinement. We explore how this works for N=4 SYM on S1×S3 in the large N limit at both small and large coupling. We find evidence for a continuous range of grading parameters that preserve confinement for all temperatures at large coupling, while at small coupling only a discrete set of gradings preserves confinement.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.103.066013</doi><orcidid>https://orcid.org/0000-0002-8683-4166</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2021-03, Vol.103 (6), p.1, Article 066013
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2518776692
source American Physical Society Journals
subjects Confinement
Coupling
Gauge theory
Low temperature
Partitions (mathematics)
title Confinement and graded partition functions for N = 4 SYM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confinement%20and%20graded%20partition%20functions%20for%20N%20=%204%20SYM&rft.jtitle=Physical%20review.%20D&rft.au=Cherman,%20Aleksey&rft.date=2021-03-19&rft.volume=103&rft.issue=6&rft.spage=1&rft.pages=1-&rft.artnum=066013&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.103.066013&rft_dat=%3Cproquest_cross%3E2518776692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518776692&rft_id=info:pmid/&rfr_iscdi=true