Using POMDPs for learning cost sensitive decision trees
In classification, an algorithm learns to classify a given instance based on a set of observed attribute values. In many real world cases testing the value of an attribute incurs a cost. Furthermore, there can also be a cost associated with the misclassification of an instance. Cost sensitive classi...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence 2021-03, Vol.292, p.103400, Article 103400 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103400 |
container_title | Artificial intelligence |
container_volume | 292 |
creator | Maliah, Shlomi Shani, Guy |
description | In classification, an algorithm learns to classify a given instance based on a set of observed attribute values. In many real world cases testing the value of an attribute incurs a cost. Furthermore, there can also be a cost associated with the misclassification of an instance. Cost sensitive classification attempts to minimize the expected cost of classification, by deciding after each observed attribute value, which attribute to measure next. In this paper we suggest Partially Observable Markov Decision Processes (POMDPs) as a modeling tool for cost sensitive classification. POMDPs are typically solved through a policy over belief states. We show how a relatively small set of potentially important belief states can be identified, and define an MDP over these belief states. To identify these potentially important belief states, we construct standard decision trees over all attribute subsets, and the leaves of these trees become the state space of our tree-based MDP. At each phase we decide on the next attribute to measure, balancing the cost of the measurement and the classification accuracy. We compare our approach to a set of previous approaches, showing our approach to work better for a range of misclassification costs. |
doi_str_mv | 10.1016/j.artint.2020.103400 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518776630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370218306507</els_id><sourcerecordid>2518776630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-2e7fb8df8b3f5c76011959a59358ea245d43350ab7dfbbc81656dd001ed3f023</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-Aw8Fz10nSdO0F0FWV4WV3cN6Dm0ykZQ1XZPsgv_elnr2NMzjvTfMR8gthQUFWt53iyYk59OCARslXgCckRmtJMtlzeg5mQFAkXMJ7JJcxdgNK69rOiPyIzr_mW0370_bmNk-ZHtsgh813ceURfTRJXfCzKB20fU-SwExXpML2-wj3vzNOdmtnnfL13y9eXlbPq5zzXmRcobStpWxVcut0LIESmtRN6LmosKGFcIUnAtoWmls2-qKlqI0BoCi4RYYn5O7qfYQ-u8jxqS6_hj8cFExMfwny5LD4Comlw59jAGtOgT31YQfRUGNhFSnJkJqJKQmQkPsYYrh8MDJYVBRO_QajQuokzK9-7_gF-8sb4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518776630</pqid></control><display><type>article</type><title>Using POMDPs for learning cost sensitive decision trees</title><source>Access via ScienceDirect (Elsevier)</source><creator>Maliah, Shlomi ; Shani, Guy</creator><creatorcontrib>Maliah, Shlomi ; Shani, Guy</creatorcontrib><description>In classification, an algorithm learns to classify a given instance based on a set of observed attribute values. In many real world cases testing the value of an attribute incurs a cost. Furthermore, there can also be a cost associated with the misclassification of an instance. Cost sensitive classification attempts to minimize the expected cost of classification, by deciding after each observed attribute value, which attribute to measure next. In this paper we suggest Partially Observable Markov Decision Processes (POMDPs) as a modeling tool for cost sensitive classification. POMDPs are typically solved through a policy over belief states. We show how a relatively small set of potentially important belief states can be identified, and define an MDP over these belief states. To identify these potentially important belief states, we construct standard decision trees over all attribute subsets, and the leaves of these trees become the state space of our tree-based MDP. At each phase we decide on the next attribute to measure, balancing the cost of the measurement and the classification accuracy. We compare our approach to a set of previous approaches, showing our approach to work better for a range of misclassification costs.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/j.artint.2020.103400</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Classification ; Cost sensitive classification ; Decision trees ; Leaves ; Machine learning ; Markov processes ; MDP ; POMDP</subject><ispartof>Artificial intelligence, 2021-03, Vol.292, p.103400, Article 103400</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Mar 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-2e7fb8df8b3f5c76011959a59358ea245d43350ab7dfbbc81656dd001ed3f023</citedby><cites>FETCH-LOGICAL-c334t-2e7fb8df8b3f5c76011959a59358ea245d43350ab7dfbbc81656dd001ed3f023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artint.2020.103400$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Maliah, Shlomi</creatorcontrib><creatorcontrib>Shani, Guy</creatorcontrib><title>Using POMDPs for learning cost sensitive decision trees</title><title>Artificial intelligence</title><description>In classification, an algorithm learns to classify a given instance based on a set of observed attribute values. In many real world cases testing the value of an attribute incurs a cost. Furthermore, there can also be a cost associated with the misclassification of an instance. Cost sensitive classification attempts to minimize the expected cost of classification, by deciding after each observed attribute value, which attribute to measure next. In this paper we suggest Partially Observable Markov Decision Processes (POMDPs) as a modeling tool for cost sensitive classification. POMDPs are typically solved through a policy over belief states. We show how a relatively small set of potentially important belief states can be identified, and define an MDP over these belief states. To identify these potentially important belief states, we construct standard decision trees over all attribute subsets, and the leaves of these trees become the state space of our tree-based MDP. At each phase we decide on the next attribute to measure, balancing the cost of the measurement and the classification accuracy. We compare our approach to a set of previous approaches, showing our approach to work better for a range of misclassification costs.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Cost sensitive classification</subject><subject>Decision trees</subject><subject>Leaves</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>MDP</subject><subject>POMDP</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-Aw8Fz10nSdO0F0FWV4WV3cN6Dm0ykZQ1XZPsgv_elnr2NMzjvTfMR8gthQUFWt53iyYk59OCARslXgCckRmtJMtlzeg5mQFAkXMJ7JJcxdgNK69rOiPyIzr_mW0370_bmNk-ZHtsgh813ceURfTRJXfCzKB20fU-SwExXpML2-wj3vzNOdmtnnfL13y9eXlbPq5zzXmRcobStpWxVcut0LIESmtRN6LmosKGFcIUnAtoWmls2-qKlqI0BoCi4RYYn5O7qfYQ-u8jxqS6_hj8cFExMfwny5LD4Comlw59jAGtOgT31YQfRUGNhFSnJkJqJKQmQkPsYYrh8MDJYVBRO_QajQuokzK9-7_gF-8sb4w</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Maliah, Shlomi</creator><creator>Shani, Guy</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202103</creationdate><title>Using POMDPs for learning cost sensitive decision trees</title><author>Maliah, Shlomi ; Shani, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-2e7fb8df8b3f5c76011959a59358ea245d43350ab7dfbbc81656dd001ed3f023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Cost sensitive classification</topic><topic>Decision trees</topic><topic>Leaves</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>MDP</topic><topic>POMDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maliah, Shlomi</creatorcontrib><creatorcontrib>Shani, Guy</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maliah, Shlomi</au><au>Shani, Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using POMDPs for learning cost sensitive decision trees</atitle><jtitle>Artificial intelligence</jtitle><date>2021-03</date><risdate>2021</risdate><volume>292</volume><spage>103400</spage><pages>103400-</pages><artnum>103400</artnum><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>In classification, an algorithm learns to classify a given instance based on a set of observed attribute values. In many real world cases testing the value of an attribute incurs a cost. Furthermore, there can also be a cost associated with the misclassification of an instance. Cost sensitive classification attempts to minimize the expected cost of classification, by deciding after each observed attribute value, which attribute to measure next. In this paper we suggest Partially Observable Markov Decision Processes (POMDPs) as a modeling tool for cost sensitive classification. POMDPs are typically solved through a policy over belief states. We show how a relatively small set of potentially important belief states can be identified, and define an MDP over these belief states. To identify these potentially important belief states, we construct standard decision trees over all attribute subsets, and the leaves of these trees become the state space of our tree-based MDP. At each phase we decide on the next attribute to measure, balancing the cost of the measurement and the classification accuracy. We compare our approach to a set of previous approaches, showing our approach to work better for a range of misclassification costs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.artint.2020.103400</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-3702 |
ispartof | Artificial intelligence, 2021-03, Vol.292, p.103400, Article 103400 |
issn | 0004-3702 1872-7921 |
language | eng |
recordid | cdi_proquest_journals_2518776630 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Classification Cost sensitive classification Decision trees Leaves Machine learning Markov processes MDP POMDP |
title | Using POMDPs for learning cost sensitive decision trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20POMDPs%20for%20learning%20cost%20sensitive%20decision%20trees&rft.jtitle=Artificial%20intelligence&rft.au=Maliah,%20Shlomi&rft.date=2021-03&rft.volume=292&rft.spage=103400&rft.pages=103400-&rft.artnum=103400&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/j.artint.2020.103400&rft_dat=%3Cproquest_cross%3E2518776630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518776630&rft_id=info:pmid/&rft_els_id=S0004370218306507&rfr_iscdi=true |