Using POMDPs for learning cost sensitive decision trees

In classification, an algorithm learns to classify a given instance based on a set of observed attribute values. In many real world cases testing the value of an attribute incurs a cost. Furthermore, there can also be a cost associated with the misclassification of an instance. Cost sensitive classi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 2021-03, Vol.292, p.103400, Article 103400
Hauptverfasser: Maliah, Shlomi, Shani, Guy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103400
container_title Artificial intelligence
container_volume 292
creator Maliah, Shlomi
Shani, Guy
description In classification, an algorithm learns to classify a given instance based on a set of observed attribute values. In many real world cases testing the value of an attribute incurs a cost. Furthermore, there can also be a cost associated with the misclassification of an instance. Cost sensitive classification attempts to minimize the expected cost of classification, by deciding after each observed attribute value, which attribute to measure next. In this paper we suggest Partially Observable Markov Decision Processes (POMDPs) as a modeling tool for cost sensitive classification. POMDPs are typically solved through a policy over belief states. We show how a relatively small set of potentially important belief states can be identified, and define an MDP over these belief states. To identify these potentially important belief states, we construct standard decision trees over all attribute subsets, and the leaves of these trees become the state space of our tree-based MDP. At each phase we decide on the next attribute to measure, balancing the cost of the measurement and the classification accuracy. We compare our approach to a set of previous approaches, showing our approach to work better for a range of misclassification costs.
doi_str_mv 10.1016/j.artint.2020.103400
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518776630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370218306507</els_id><sourcerecordid>2518776630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-2e7fb8df8b3f5c76011959a59358ea245d43350ab7dfbbc81656dd001ed3f023</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-Aw8Fz10nSdO0F0FWV4WV3cN6Dm0ykZQ1XZPsgv_elnr2NMzjvTfMR8gthQUFWt53iyYk59OCARslXgCckRmtJMtlzeg5mQFAkXMJ7JJcxdgNK69rOiPyIzr_mW0370_bmNk-ZHtsgh813ceURfTRJXfCzKB20fU-SwExXpML2-wj3vzNOdmtnnfL13y9eXlbPq5zzXmRcobStpWxVcut0LIESmtRN6LmosKGFcIUnAtoWmls2-qKlqI0BoCi4RYYn5O7qfYQ-u8jxqS6_hj8cFExMfwny5LD4Comlw59jAGtOgT31YQfRUGNhFSnJkJqJKQmQkPsYYrh8MDJYVBRO_QajQuokzK9-7_gF-8sb4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518776630</pqid></control><display><type>article</type><title>Using POMDPs for learning cost sensitive decision trees</title><source>Access via ScienceDirect (Elsevier)</source><creator>Maliah, Shlomi ; Shani, Guy</creator><creatorcontrib>Maliah, Shlomi ; Shani, Guy</creatorcontrib><description>In classification, an algorithm learns to classify a given instance based on a set of observed attribute values. In many real world cases testing the value of an attribute incurs a cost. Furthermore, there can also be a cost associated with the misclassification of an instance. Cost sensitive classification attempts to minimize the expected cost of classification, by deciding after each observed attribute value, which attribute to measure next. In this paper we suggest Partially Observable Markov Decision Processes (POMDPs) as a modeling tool for cost sensitive classification. POMDPs are typically solved through a policy over belief states. We show how a relatively small set of potentially important belief states can be identified, and define an MDP over these belief states. To identify these potentially important belief states, we construct standard decision trees over all attribute subsets, and the leaves of these trees become the state space of our tree-based MDP. At each phase we decide on the next attribute to measure, balancing the cost of the measurement and the classification accuracy. We compare our approach to a set of previous approaches, showing our approach to work better for a range of misclassification costs.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/j.artint.2020.103400</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Classification ; Cost sensitive classification ; Decision trees ; Leaves ; Machine learning ; Markov processes ; MDP ; POMDP</subject><ispartof>Artificial intelligence, 2021-03, Vol.292, p.103400, Article 103400</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Mar 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-2e7fb8df8b3f5c76011959a59358ea245d43350ab7dfbbc81656dd001ed3f023</citedby><cites>FETCH-LOGICAL-c334t-2e7fb8df8b3f5c76011959a59358ea245d43350ab7dfbbc81656dd001ed3f023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artint.2020.103400$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Maliah, Shlomi</creatorcontrib><creatorcontrib>Shani, Guy</creatorcontrib><title>Using POMDPs for learning cost sensitive decision trees</title><title>Artificial intelligence</title><description>In classification, an algorithm learns to classify a given instance based on a set of observed attribute values. In many real world cases testing the value of an attribute incurs a cost. Furthermore, there can also be a cost associated with the misclassification of an instance. Cost sensitive classification attempts to minimize the expected cost of classification, by deciding after each observed attribute value, which attribute to measure next. In this paper we suggest Partially Observable Markov Decision Processes (POMDPs) as a modeling tool for cost sensitive classification. POMDPs are typically solved through a policy over belief states. We show how a relatively small set of potentially important belief states can be identified, and define an MDP over these belief states. To identify these potentially important belief states, we construct standard decision trees over all attribute subsets, and the leaves of these trees become the state space of our tree-based MDP. At each phase we decide on the next attribute to measure, balancing the cost of the measurement and the classification accuracy. We compare our approach to a set of previous approaches, showing our approach to work better for a range of misclassification costs.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Cost sensitive classification</subject><subject>Decision trees</subject><subject>Leaves</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>MDP</subject><subject>POMDP</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-Aw8Fz10nSdO0F0FWV4WV3cN6Dm0ykZQ1XZPsgv_elnr2NMzjvTfMR8gthQUFWt53iyYk59OCARslXgCckRmtJMtlzeg5mQFAkXMJ7JJcxdgNK69rOiPyIzr_mW0370_bmNk-ZHtsgh813ceURfTRJXfCzKB20fU-SwExXpML2-wj3vzNOdmtnnfL13y9eXlbPq5zzXmRcobStpWxVcut0LIESmtRN6LmosKGFcIUnAtoWmls2-qKlqI0BoCi4RYYn5O7qfYQ-u8jxqS6_hj8cFExMfwny5LD4Comlw59jAGtOgT31YQfRUGNhFSnJkJqJKQmQkPsYYrh8MDJYVBRO_QajQuokzK9-7_gF-8sb4w</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Maliah, Shlomi</creator><creator>Shani, Guy</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202103</creationdate><title>Using POMDPs for learning cost sensitive decision trees</title><author>Maliah, Shlomi ; Shani, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-2e7fb8df8b3f5c76011959a59358ea245d43350ab7dfbbc81656dd001ed3f023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Cost sensitive classification</topic><topic>Decision trees</topic><topic>Leaves</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>MDP</topic><topic>POMDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maliah, Shlomi</creatorcontrib><creatorcontrib>Shani, Guy</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maliah, Shlomi</au><au>Shani, Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using POMDPs for learning cost sensitive decision trees</atitle><jtitle>Artificial intelligence</jtitle><date>2021-03</date><risdate>2021</risdate><volume>292</volume><spage>103400</spage><pages>103400-</pages><artnum>103400</artnum><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>In classification, an algorithm learns to classify a given instance based on a set of observed attribute values. In many real world cases testing the value of an attribute incurs a cost. Furthermore, there can also be a cost associated with the misclassification of an instance. Cost sensitive classification attempts to minimize the expected cost of classification, by deciding after each observed attribute value, which attribute to measure next. In this paper we suggest Partially Observable Markov Decision Processes (POMDPs) as a modeling tool for cost sensitive classification. POMDPs are typically solved through a policy over belief states. We show how a relatively small set of potentially important belief states can be identified, and define an MDP over these belief states. To identify these potentially important belief states, we construct standard decision trees over all attribute subsets, and the leaves of these trees become the state space of our tree-based MDP. At each phase we decide on the next attribute to measure, balancing the cost of the measurement and the classification accuracy. We compare our approach to a set of previous approaches, showing our approach to work better for a range of misclassification costs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.artint.2020.103400</doi></addata></record>
fulltext fulltext
identifier ISSN: 0004-3702
ispartof Artificial intelligence, 2021-03, Vol.292, p.103400, Article 103400
issn 0004-3702
1872-7921
language eng
recordid cdi_proquest_journals_2518776630
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Classification
Cost sensitive classification
Decision trees
Leaves
Machine learning
Markov processes
MDP
POMDP
title Using POMDPs for learning cost sensitive decision trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20POMDPs%20for%20learning%20cost%20sensitive%20decision%20trees&rft.jtitle=Artificial%20intelligence&rft.au=Maliah,%20Shlomi&rft.date=2021-03&rft.volume=292&rft.spage=103400&rft.pages=103400-&rft.artnum=103400&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/j.artint.2020.103400&rft_dat=%3Cproquest_cross%3E2518776630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518776630&rft_id=info:pmid/&rft_els_id=S0004370218306507&rfr_iscdi=true