Dynamical Casimir effect in nonlinear vibrating cavities
Nonlinear terms in the equations of motion can induce secularly growing loop corrections to correlation functions. Recently such corrections were shown to affect the particle production by a nonuniformly moving ideal mirror. We extend this conclusion to the cases of ideal vibrating cavity and single...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2021-03, Vol.103 (6), p.1, Article 065005 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 103 |
creator | Akopyan, Lianna A. Trunin, Dmitrii A. |
description | Nonlinear terms in the equations of motion can induce secularly growing loop corrections to correlation functions. Recently such corrections were shown to affect the particle production by a nonuniformly moving ideal mirror. We extend this conclusion to the cases of ideal vibrating cavity and single semitransparent mirror. These models provide natural IR and UV scales and allow a more accurate study of the loop behavior. In both cases we confirm that two-loop correction to the Keldysh propagator quadratically grows with time. This growth indicates a breakdown of the semiclassical approximation and emphasizes that bulk nonlinearities in the dynamical Casimir effect cannot be neglected for large evolution times. |
doi_str_mv | 10.1103/PhysRevD.103.065005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518775548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518775548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-81ad1181c4894fabba853e69e2420e3e83dc51200901f0bf200da56410fc3783</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOZ-gTcFrzvPyUebXsrmFwwU2X1I00QztnQmXaH_3o6qV-d54eU98BByi7BEBHb__jWkD9uvl2NYQiEAxAWZUV5CDkCry39GuCaLlHYwYgFViTgjcj0EffBG77OVTv7gY2ads6bLfMhCG_Y-WB2z3tdRdz58Zkb3vvM23ZArp_fJLn7vnGyfHrerl3zz9vy6etjkhlHa5RJ1gyjRcFlxp-taS8FsUVnKKVhmJWuMQApQATqo3UiNFgVHcIaVks3J3TR7jO33yaZO7dpTDONHRQXKshSCn1tsapnYphStU8foDzoOCkGdJak_SeocJknsB6iSWnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518775548</pqid></control><display><type>article</type><title>Dynamical Casimir effect in nonlinear vibrating cavities</title><source>American Physical Society Journals</source><creator>Akopyan, Lianna A. ; Trunin, Dmitrii A.</creator><creatorcontrib>Akopyan, Lianna A. ; Trunin, Dmitrii A.</creatorcontrib><description>Nonlinear terms in the equations of motion can induce secularly growing loop corrections to correlation functions. Recently such corrections were shown to affect the particle production by a nonuniformly moving ideal mirror. We extend this conclusion to the cases of ideal vibrating cavity and single semitransparent mirror. These models provide natural IR and UV scales and allow a more accurate study of the loop behavior. In both cases we confirm that two-loop correction to the Keldysh propagator quadratically grows with time. This growth indicates a breakdown of the semiclassical approximation and emphasizes that bulk nonlinearities in the dynamical Casimir effect cannot be neglected for large evolution times.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.103.065005</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Equations of motion ; Holes ; Nonlinearity ; Particle production ; Quantum theory</subject><ispartof>Physical review. D, 2021-03, Vol.103 (6), p.1, Article 065005</ispartof><rights>Copyright American Physical Society Mar 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-81ad1181c4894fabba853e69e2420e3e83dc51200901f0bf200da56410fc3783</citedby><cites>FETCH-LOGICAL-c322t-81ad1181c4894fabba853e69e2420e3e83dc51200901f0bf200da56410fc3783</cites><orcidid>0000-0002-6160-8103 ; 0000-0002-9064-9342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Akopyan, Lianna A.</creatorcontrib><creatorcontrib>Trunin, Dmitrii A.</creatorcontrib><title>Dynamical Casimir effect in nonlinear vibrating cavities</title><title>Physical review. D</title><description>Nonlinear terms in the equations of motion can induce secularly growing loop corrections to correlation functions. Recently such corrections were shown to affect the particle production by a nonuniformly moving ideal mirror. We extend this conclusion to the cases of ideal vibrating cavity and single semitransparent mirror. These models provide natural IR and UV scales and allow a more accurate study of the loop behavior. In both cases we confirm that two-loop correction to the Keldysh propagator quadratically grows with time. This growth indicates a breakdown of the semiclassical approximation and emphasizes that bulk nonlinearities in the dynamical Casimir effect cannot be neglected for large evolution times.</description><subject>Equations of motion</subject><subject>Holes</subject><subject>Nonlinearity</subject><subject>Particle production</subject><subject>Quantum theory</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOOZ-gTcFrzvPyUebXsrmFwwU2X1I00QztnQmXaH_3o6qV-d54eU98BByi7BEBHb__jWkD9uvl2NYQiEAxAWZUV5CDkCry39GuCaLlHYwYgFViTgjcj0EffBG77OVTv7gY2ads6bLfMhCG_Y-WB2z3tdRdz58Zkb3vvM23ZArp_fJLn7vnGyfHrerl3zz9vy6etjkhlHa5RJ1gyjRcFlxp-taS8FsUVnKKVhmJWuMQApQATqo3UiNFgVHcIaVks3J3TR7jO33yaZO7dpTDONHRQXKshSCn1tsapnYphStU8foDzoOCkGdJak_SeocJknsB6iSWnw</recordid><startdate>20210311</startdate><enddate>20210311</enddate><creator>Akopyan, Lianna A.</creator><creator>Trunin, Dmitrii A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6160-8103</orcidid><orcidid>https://orcid.org/0000-0002-9064-9342</orcidid></search><sort><creationdate>20210311</creationdate><title>Dynamical Casimir effect in nonlinear vibrating cavities</title><author>Akopyan, Lianna A. ; Trunin, Dmitrii A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-81ad1181c4894fabba853e69e2420e3e83dc51200901f0bf200da56410fc3783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Equations of motion</topic><topic>Holes</topic><topic>Nonlinearity</topic><topic>Particle production</topic><topic>Quantum theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akopyan, Lianna A.</creatorcontrib><creatorcontrib>Trunin, Dmitrii A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akopyan, Lianna A.</au><au>Trunin, Dmitrii A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical Casimir effect in nonlinear vibrating cavities</atitle><jtitle>Physical review. D</jtitle><date>2021-03-11</date><risdate>2021</risdate><volume>103</volume><issue>6</issue><spage>1</spage><pages>1-</pages><artnum>065005</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Nonlinear terms in the equations of motion can induce secularly growing loop corrections to correlation functions. Recently such corrections were shown to affect the particle production by a nonuniformly moving ideal mirror. We extend this conclusion to the cases of ideal vibrating cavity and single semitransparent mirror. These models provide natural IR and UV scales and allow a more accurate study of the loop behavior. In both cases we confirm that two-loop correction to the Keldysh propagator quadratically grows with time. This growth indicates a breakdown of the semiclassical approximation and emphasizes that bulk nonlinearities in the dynamical Casimir effect cannot be neglected for large evolution times.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.103.065005</doi><orcidid>https://orcid.org/0000-0002-6160-8103</orcidid><orcidid>https://orcid.org/0000-0002-9064-9342</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2021-03, Vol.103 (6), p.1, Article 065005 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2518775548 |
source | American Physical Society Journals |
subjects | Equations of motion Holes Nonlinearity Particle production Quantum theory |
title | Dynamical Casimir effect in nonlinear vibrating cavities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20Casimir%20effect%20in%20nonlinear%20vibrating%20cavities&rft.jtitle=Physical%20review.%20D&rft.au=Akopyan,%20Lianna%20A.&rft.date=2021-03-11&rft.volume=103&rft.issue=6&rft.spage=1&rft.pages=1-&rft.artnum=065005&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.103.065005&rft_dat=%3Cproquest_cross%3E2518775548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518775548&rft_id=info:pmid/&rfr_iscdi=true |