Numerical Investigation on Pylon and Flush Wall Injection in Cold Coaxial Jets

The dual combustion ramjet (DCR) engine is considered one of the promising engines for the hypersonic missile propulsion system. This paper reveals the non-reacting flow characteristics of the DCR engine with the influence of pylon and wall injections in coaxial jets using numerical investigation. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2021-04, Vol.1128 (1), p.12035
Hauptverfasser: Sarathkumar Sebastin, J., Jeyakumar, S., Karthik, K., Sivakumar, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12035
container_title IOP conference series. Materials Science and Engineering
container_volume 1128
creator Sarathkumar Sebastin, J.
Jeyakumar, S.
Karthik, K.
Sivakumar, R.
description The dual combustion ramjet (DCR) engine is considered one of the promising engines for the hypersonic missile propulsion system. This paper reveals the non-reacting flow characteristics of the DCR engine with the influence of pylon and wall injections in coaxial jets using numerical investigation. The supersonic combustor of the DCR engine is modeled and analysed using the commercial CFD software ANSYS 18.0. The three-dimensional compressible Reynolds-averaged Navier-Stokes (RANS) equations coupled with the SST k - ω turbulence model have been used to analyse the coaxial mixing characteristics of the jets. The numerical study is validated with the experimental data and agrees with it for further investigation. The pylon and wall injectors are located symmetrically at the gas generator’s nozzle exit, and the air is used as the injectant to simulate gaseous fuel. The pylon and wall injection results are compared with the actual DCR engine. In a typical DCR engine, the shock waves generated from the gas generator nozzle enhance the mixing of the coaxial jets with minimum total pressure loss. The pylon injection induces more shock interactions along the flow direction within the supersonic combustor leading to higher total pressure loss than the wall injection. The pylon injection provides the spatial distribution of fuels compared to the wall injection in the coaxial supersonic flow field.
doi_str_mv 10.1088/1757-899X/1128/1/012035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518772320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518772320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1255-8f103b7c231798246f4210cf901fabb6cec5676773addf31e4d563db2abbeb143</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKe_wYLXdTlJ06SXUpybjOmFonchTRNt6dqZtOL-vamVweF8cN7zwYPQNeBbwEIsgDMeiyx7XwCQUC4wEEzZCZodO6fHXMA5uvC-xjjlSYJnaLsddsZVWjXRuv02vq8-VF91bRTs-dAEr9oyWjaD_4zeVDOqaqP_FFUb5V1TBqd-qjD_aHp_ic6sary5-o9z9Lq8f8lX8ebpYZ3fbWINhLFYWMC04JpQ4JkgSWoTAljbDINVRZFqo1nKU86pKktLwSQlS2lZkNA0BSR0jm6mvXvXfQ3hbVl3g2vDSUkYCM4JDRDmiE8q7TrvnbFy76qdcgcJWI7w5IhFjojkCE-CnODRX6uTYe0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518772320</pqid></control><display><type>article</type><title>Numerical Investigation on Pylon and Flush Wall Injection in Cold Coaxial Jets</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Sarathkumar Sebastin, J. ; Jeyakumar, S. ; Karthik, K. ; Sivakumar, R.</creator><creatorcontrib>Sarathkumar Sebastin, J. ; Jeyakumar, S. ; Karthik, K. ; Sivakumar, R.</creatorcontrib><description>The dual combustion ramjet (DCR) engine is considered one of the promising engines for the hypersonic missile propulsion system. This paper reveals the non-reacting flow characteristics of the DCR engine with the influence of pylon and wall injections in coaxial jets using numerical investigation. The supersonic combustor of the DCR engine is modeled and analysed using the commercial CFD software ANSYS 18.0. The three-dimensional compressible Reynolds-averaged Navier-Stokes (RANS) equations coupled with the SST k - ω turbulence model have been used to analyse the coaxial mixing characteristics of the jets. The numerical study is validated with the experimental data and agrees with it for further investigation. The pylon and wall injectors are located symmetrically at the gas generator’s nozzle exit, and the air is used as the injectant to simulate gaseous fuel. The pylon and wall injection results are compared with the actual DCR engine. In a typical DCR engine, the shock waves generated from the gas generator nozzle enhance the mixing of the coaxial jets with minimum total pressure loss. The pylon injection induces more shock interactions along the flow direction within the supersonic combustor leading to higher total pressure loss than the wall injection. The pylon injection provides the spatial distribution of fuels compared to the wall injection in the coaxial supersonic flow field.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/1128/1/012035</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aerodynamics ; Combustion chambers ; Compressibility ; Computational fluid dynamics ; Flow characteristics ; Gas generators ; Gaseous fuels ; Jets ; Missile propulsion ; Nozzles ; Numerical analysis ; Pressure loss ; Propulsion systems ; Reacting flow ; Reynolds averaged Navier-Stokes method ; Shock waves ; Spatial distribution ; Supersonic flow ; Turbulence models</subject><ispartof>IOP conference series. Materials Science and Engineering, 2021-04, Vol.1128 (1), p.12035</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1255-8f103b7c231798246f4210cf901fabb6cec5676773addf31e4d563db2abbeb143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sarathkumar Sebastin, J.</creatorcontrib><creatorcontrib>Jeyakumar, S.</creatorcontrib><creatorcontrib>Karthik, K.</creatorcontrib><creatorcontrib>Sivakumar, R.</creatorcontrib><title>Numerical Investigation on Pylon and Flush Wall Injection in Cold Coaxial Jets</title><title>IOP conference series. Materials Science and Engineering</title><description>The dual combustion ramjet (DCR) engine is considered one of the promising engines for the hypersonic missile propulsion system. This paper reveals the non-reacting flow characteristics of the DCR engine with the influence of pylon and wall injections in coaxial jets using numerical investigation. The supersonic combustor of the DCR engine is modeled and analysed using the commercial CFD software ANSYS 18.0. The three-dimensional compressible Reynolds-averaged Navier-Stokes (RANS) equations coupled with the SST k - ω turbulence model have been used to analyse the coaxial mixing characteristics of the jets. The numerical study is validated with the experimental data and agrees with it for further investigation. The pylon and wall injectors are located symmetrically at the gas generator’s nozzle exit, and the air is used as the injectant to simulate gaseous fuel. The pylon and wall injection results are compared with the actual DCR engine. In a typical DCR engine, the shock waves generated from the gas generator nozzle enhance the mixing of the coaxial jets with minimum total pressure loss. The pylon injection induces more shock interactions along the flow direction within the supersonic combustor leading to higher total pressure loss than the wall injection. The pylon injection provides the spatial distribution of fuels compared to the wall injection in the coaxial supersonic flow field.</description><subject>Aerodynamics</subject><subject>Combustion chambers</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Flow characteristics</subject><subject>Gas generators</subject><subject>Gaseous fuels</subject><subject>Jets</subject><subject>Missile propulsion</subject><subject>Nozzles</subject><subject>Numerical analysis</subject><subject>Pressure loss</subject><subject>Propulsion systems</subject><subject>Reacting flow</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Shock waves</subject><subject>Spatial distribution</subject><subject>Supersonic flow</subject><subject>Turbulence models</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kF1LwzAUhoMoOKe_wYLXdTlJ06SXUpybjOmFonchTRNt6dqZtOL-vamVweF8cN7zwYPQNeBbwEIsgDMeiyx7XwCQUC4wEEzZCZodO6fHXMA5uvC-xjjlSYJnaLsddsZVWjXRuv02vq8-VF91bRTs-dAEr9oyWjaD_4zeVDOqaqP_FFUb5V1TBqd-qjD_aHp_ic6sary5-o9z9Lq8f8lX8ebpYZ3fbWINhLFYWMC04JpQ4JkgSWoTAljbDINVRZFqo1nKU86pKktLwSQlS2lZkNA0BSR0jm6mvXvXfQ3hbVl3g2vDSUkYCM4JDRDmiE8q7TrvnbFy76qdcgcJWI7w5IhFjojkCE-CnODRX6uTYe0</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Sarathkumar Sebastin, J.</creator><creator>Jeyakumar, S.</creator><creator>Karthik, K.</creator><creator>Sivakumar, R.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210401</creationdate><title>Numerical Investigation on Pylon and Flush Wall Injection in Cold Coaxial Jets</title><author>Sarathkumar Sebastin, J. ; Jeyakumar, S. ; Karthik, K. ; Sivakumar, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1255-8f103b7c231798246f4210cf901fabb6cec5676773addf31e4d563db2abbeb143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Combustion chambers</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Flow characteristics</topic><topic>Gas generators</topic><topic>Gaseous fuels</topic><topic>Jets</topic><topic>Missile propulsion</topic><topic>Nozzles</topic><topic>Numerical analysis</topic><topic>Pressure loss</topic><topic>Propulsion systems</topic><topic>Reacting flow</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Shock waves</topic><topic>Spatial distribution</topic><topic>Supersonic flow</topic><topic>Turbulence models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarathkumar Sebastin, J.</creatorcontrib><creatorcontrib>Jeyakumar, S.</creatorcontrib><creatorcontrib>Karthik, K.</creatorcontrib><creatorcontrib>Sivakumar, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarathkumar Sebastin, J.</au><au>Jeyakumar, S.</au><au>Karthik, K.</au><au>Sivakumar, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Investigation on Pylon and Flush Wall Injection in Cold Coaxial Jets</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>1128</volume><issue>1</issue><spage>12035</spage><pages>12035-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>The dual combustion ramjet (DCR) engine is considered one of the promising engines for the hypersonic missile propulsion system. This paper reveals the non-reacting flow characteristics of the DCR engine with the influence of pylon and wall injections in coaxial jets using numerical investigation. The supersonic combustor of the DCR engine is modeled and analysed using the commercial CFD software ANSYS 18.0. The three-dimensional compressible Reynolds-averaged Navier-Stokes (RANS) equations coupled with the SST k - ω turbulence model have been used to analyse the coaxial mixing characteristics of the jets. The numerical study is validated with the experimental data and agrees with it for further investigation. The pylon and wall injectors are located symmetrically at the gas generator’s nozzle exit, and the air is used as the injectant to simulate gaseous fuel. The pylon and wall injection results are compared with the actual DCR engine. In a typical DCR engine, the shock waves generated from the gas generator nozzle enhance the mixing of the coaxial jets with minimum total pressure loss. The pylon injection induces more shock interactions along the flow direction within the supersonic combustor leading to higher total pressure loss than the wall injection. The pylon injection provides the spatial distribution of fuels compared to the wall injection in the coaxial supersonic flow field.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/1128/1/012035</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2021-04, Vol.1128 (1), p.12035
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2518772320
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Aerodynamics
Combustion chambers
Compressibility
Computational fluid dynamics
Flow characteristics
Gas generators
Gaseous fuels
Jets
Missile propulsion
Nozzles
Numerical analysis
Pressure loss
Propulsion systems
Reacting flow
Reynolds averaged Navier-Stokes method
Shock waves
Spatial distribution
Supersonic flow
Turbulence models
title Numerical Investigation on Pylon and Flush Wall Injection in Cold Coaxial Jets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Investigation%20on%20Pylon%20and%20Flush%20Wall%20Injection%20in%20Cold%20Coaxial%20Jets&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Sarathkumar%20Sebastin,%20J.&rft.date=2021-04-01&rft.volume=1128&rft.issue=1&rft.spage=12035&rft.pages=12035-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/1128/1/012035&rft_dat=%3Cproquest_cross%3E2518772320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518772320&rft_id=info:pmid/&rfr_iscdi=true