On-line monitoring of penetration state in laser-arc hybrid welding based on keyhole and arc features

Incomplete penetration is a typical defect in laser-arc hybrid welding. On-line monitoring of welding process is an important method to assess welding quality. In laser-arc hybrid welding, there is a strong correlation between keyhole, arc and incomplete penetration. Therefore, an on-line monitoring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-04, Vol.1884 (1), p.12039
Hauptverfasser: Zhang, Minghai, Shu, Leshi, Zhou, Qi, Jiang, Ping, Gong, Zhaoliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12039
container_title Journal of physics. Conference series
container_volume 1884
creator Zhang, Minghai
Shu, Leshi
Zhou, Qi
Jiang, Ping
Gong, Zhaoliang
description Incomplete penetration is a typical defect in laser-arc hybrid welding. On-line monitoring of welding process is an important method to assess welding quality. In laser-arc hybrid welding, there is a strong correlation between keyhole, arc and incomplete penetration. Therefore, an on-line monitoring method of penetration state based on keyhole and arc features is proposed in this paper. In the proposed method, the images of keyhole and arc in laser-arc hybrid welding are captured by high-speed camera, and then the keyhole and arc features are extracted by image processing algorithm. Finally, the features are used as input to classify the penetration state using SVM model. The results show that the SVM model based on keyhole and arc features can accurately identify the penetration state.
doi_str_mv 10.1088/1742-6596/1884/1/012039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518771553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518771553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2499-182feff744f9771eb42237fdf3c710e989ffc60e24b990df44ac404481c77d813</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKu_wYDndZNstkmOUvyCQi96DtnNxKZuk5qkSP-9u1Q6lxl4n5mBB6F7Sh4pkbKmgrNq0apFTaXkNa0JZaRRF2h2Ti7Ps5TX6CbnLSHNWGKGYB2qwQfAuxh8icmHLxwd3kOAkkzxMeBcTAHsAx5MhlSZ1OPNsUve4l8Y7LTQjYHFI_oNx00cAJtg8cQ5MOWQIN-iK2eGDHf_fY4-X54_lm_Vav36vnxaVT3jSlVUMgfOCc6dEoJCxxlrhLOu6QUloKRyrl8QYLxTiljHuek54VzSXggraTNHD6e7-xR_DpCL3sZDCuNLzVoqx5tt24yUOFF9ijkncHqf_M6ko6ZET071ZEtP5vTkVFN9ctr8Aavnals</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518771553</pqid></control><display><type>article</type><title>On-line monitoring of penetration state in laser-arc hybrid welding based on keyhole and arc features</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Minghai ; Shu, Leshi ; Zhou, Qi ; Jiang, Ping ; Gong, Zhaoliang</creator><creatorcontrib>Zhang, Minghai ; Shu, Leshi ; Zhou, Qi ; Jiang, Ping ; Gong, Zhaoliang</creatorcontrib><description>Incomplete penetration is a typical defect in laser-arc hybrid welding. On-line monitoring of welding process is an important method to assess welding quality. In laser-arc hybrid welding, there is a strong correlation between keyhole, arc and incomplete penetration. Therefore, an on-line monitoring method of penetration state based on keyhole and arc features is proposed in this paper. In the proposed method, the images of keyhole and arc in laser-arc hybrid welding are captured by high-speed camera, and then the keyhole and arc features are extracted by image processing algorithm. Finally, the features are used as input to classify the penetration state using SVM model. The results show that the SVM model based on keyhole and arc features can accurately identify the penetration state.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1884/1/012039</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Arc welding ; Feature extraction ; High speed cameras ; Image classification ; Image processing ; Laser beam welding ; Lasers ; Monitoring ; Penetration ; Physics ; Quality assessment</subject><ispartof>Journal of physics. Conference series, 2021-04, Vol.1884 (1), p.12039</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2499-182feff744f9771eb42237fdf3c710e989ffc60e24b990df44ac404481c77d813</citedby><cites>FETCH-LOGICAL-c2499-182feff744f9771eb42237fdf3c710e989ffc60e24b990df44ac404481c77d813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Minghai</creatorcontrib><creatorcontrib>Shu, Leshi</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Jiang, Ping</creatorcontrib><creatorcontrib>Gong, Zhaoliang</creatorcontrib><title>On-line monitoring of penetration state in laser-arc hybrid welding based on keyhole and arc features</title><title>Journal of physics. Conference series</title><description>Incomplete penetration is a typical defect in laser-arc hybrid welding. On-line monitoring of welding process is an important method to assess welding quality. In laser-arc hybrid welding, there is a strong correlation between keyhole, arc and incomplete penetration. Therefore, an on-line monitoring method of penetration state based on keyhole and arc features is proposed in this paper. In the proposed method, the images of keyhole and arc in laser-arc hybrid welding are captured by high-speed camera, and then the keyhole and arc features are extracted by image processing algorithm. Finally, the features are used as input to classify the penetration state using SVM model. The results show that the SVM model based on keyhole and arc features can accurately identify the penetration state.</description><subject>Algorithms</subject><subject>Arc welding</subject><subject>Feature extraction</subject><subject>High speed cameras</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Laser beam welding</subject><subject>Lasers</subject><subject>Monitoring</subject><subject>Penetration</subject><subject>Physics</subject><subject>Quality assessment</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kE1LAzEQhoMoWKu_wYDndZNstkmOUvyCQi96DtnNxKZuk5qkSP-9u1Q6lxl4n5mBB6F7Sh4pkbKmgrNq0apFTaXkNa0JZaRRF2h2Ti7Ps5TX6CbnLSHNWGKGYB2qwQfAuxh8icmHLxwd3kOAkkzxMeBcTAHsAx5MhlSZ1OPNsUve4l8Y7LTQjYHFI_oNx00cAJtg8cQ5MOWQIN-iK2eGDHf_fY4-X54_lm_Vav36vnxaVT3jSlVUMgfOCc6dEoJCxxlrhLOu6QUloKRyrl8QYLxTiljHuek54VzSXggraTNHD6e7-xR_DpCL3sZDCuNLzVoqx5tt24yUOFF9ijkncHqf_M6ko6ZET071ZEtP5vTkVFN9ctr8Aavnals</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zhang, Minghai</creator><creator>Shu, Leshi</creator><creator>Zhou, Qi</creator><creator>Jiang, Ping</creator><creator>Gong, Zhaoliang</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210401</creationdate><title>On-line monitoring of penetration state in laser-arc hybrid welding based on keyhole and arc features</title><author>Zhang, Minghai ; Shu, Leshi ; Zhou, Qi ; Jiang, Ping ; Gong, Zhaoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2499-182feff744f9771eb42237fdf3c710e989ffc60e24b990df44ac404481c77d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arc welding</topic><topic>Feature extraction</topic><topic>High speed cameras</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Laser beam welding</topic><topic>Lasers</topic><topic>Monitoring</topic><topic>Penetration</topic><topic>Physics</topic><topic>Quality assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Minghai</creatorcontrib><creatorcontrib>Shu, Leshi</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Jiang, Ping</creatorcontrib><creatorcontrib>Gong, Zhaoliang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Minghai</au><au>Shu, Leshi</au><au>Zhou, Qi</au><au>Jiang, Ping</au><au>Gong, Zhaoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-line monitoring of penetration state in laser-arc hybrid welding based on keyhole and arc features</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>1884</volume><issue>1</issue><spage>12039</spage><pages>12039-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Incomplete penetration is a typical defect in laser-arc hybrid welding. On-line monitoring of welding process is an important method to assess welding quality. In laser-arc hybrid welding, there is a strong correlation between keyhole, arc and incomplete penetration. Therefore, an on-line monitoring method of penetration state based on keyhole and arc features is proposed in this paper. In the proposed method, the images of keyhole and arc in laser-arc hybrid welding are captured by high-speed camera, and then the keyhole and arc features are extracted by image processing algorithm. Finally, the features are used as input to classify the penetration state using SVM model. The results show that the SVM model based on keyhole and arc features can accurately identify the penetration state.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1884/1/012039</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-04, Vol.1884 (1), p.12039
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2518771553
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Arc welding
Feature extraction
High speed cameras
Image classification
Image processing
Laser beam welding
Lasers
Monitoring
Penetration
Physics
Quality assessment
title On-line monitoring of penetration state in laser-arc hybrid welding based on keyhole and arc features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-line%20monitoring%20of%20penetration%20state%20in%20laser-arc%20hybrid%20welding%20based%20on%20keyhole%20and%20arc%20features&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zhang,%20Minghai&rft.date=2021-04-01&rft.volume=1884&rft.issue=1&rft.spage=12039&rft.pages=12039-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1884/1/012039&rft_dat=%3Cproquest_cross%3E2518771553%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518771553&rft_id=info:pmid/&rfr_iscdi=true