Nonstationary seismic inversion: joint estimation for acoustic impedance, attenuation factor and source wavelet
Seismic signal can be expressed by nonstationary convolution model (NCM) which integrates acoustic impedance (AI), attenuation factor (AF) and source wavelet (SW) into a single formula. Although it provides attractive potential to invert AI, AF and SW, simultaneously, effective joint inversion algor...
Gespeichert in:
Veröffentlicht in: | Acta geophysica 2021-04, Vol.69 (2), p.459-481 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 481 |
---|---|
container_issue | 2 |
container_start_page | 459 |
container_title | Acta geophysica |
container_volume | 69 |
creator | Hao, Yaju Wen, Xiaotao Zhang, Hua Zhu, Yunfeng Deng, Chengxiang |
description | Seismic signal can be expressed by nonstationary convolution model (NCM) which integrates acoustic impedance (AI), attenuation factor (AF) and source wavelet (SW) into a single formula. Although it provides attractive potential to invert AI, AF and SW, simultaneously, effective joint inversion algorithm has not been developed because of the extreme instability of this nonlinear inverse problem. In this paper, we propose an alternating optimization scheme to achieve this nonlinear joint inversion. Our algorithm repeatedly alternates among three subproblems corresponding to AI, AF and SW recovery until changes in inverted models become smaller than the user-defined tolerances. Also, when we optimize one parameter, other two parameters are fixed. NCM is an explicit linear formula for AI; therefore, AI recovery is accomplished by linear inversion which is regularized by low-frequency model and isotropy total variation domain sparse constraints. However, NCM is a complicated nonlinear formula for AF. To facilitate the AF inversion, we propose a centroid frequency-based attenuation tomography method whose forward operator and observations are acquired from the time-varying wavelet amplitude spectra which is estimated according to Gabor domain factorization of NCM. SW is decoupled from NCM based on Toeplitz structure constraint, and we obtain an orthogonal wavelet transform domain sparse regularized SW inverse subproblem. Split Bregman technique is adopted to optimize AI and SW inverse subproblems. Numerical test and field data application confirm that the proposed nonstationary seismic inversion algorithm can stably generate accurate estimates of AI, AF and SW, simultaneously. |
doi_str_mv | 10.1007/s11600-021-00555-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518755883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518755883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-af387c8eebb2c3ed7f9c2e8cbfc20af41492849d2de88804b45c02964b9e3c7b3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAq9Ekm-xmvUnxHxS96Dlks7OypU1qkq20n97ULXjzNMPwezNvHkKXjN4wSqvbyFhJKaGcEUqllGR3hCZM1ZJUQsrjQ1_Kip-isxgXlJaCMj5B_tW7mEzqvTNhiyP0cdVb3LsNhJiHd3jhe5cwxNSvfjHc-YCN9UOeZHC1htY4C9fYpARuODDGpj3mWhz9ECzgb7OBJaRzdNKZZYSLQ52ij8eH99kzmb89vczu58QWrE7EdIWqrAJoGm4LaKuuthyUbTrLqekEEzVXom55C0opKhohLeV1KZoaCls1xRRdjXvXwX8N2b1eZB8un9RcMlVJqVSRKT5SNvgYA3R6HfKbYasZ1ftg9RiszsHq32D1LouKURQz7D4h_K3-R_UD9Vt_Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518755883</pqid></control><display><type>article</type><title>Nonstationary seismic inversion: joint estimation for acoustic impedance, attenuation factor and source wavelet</title><source>SpringerNature Journals</source><creator>Hao, Yaju ; Wen, Xiaotao ; Zhang, Hua ; Zhu, Yunfeng ; Deng, Chengxiang</creator><creatorcontrib>Hao, Yaju ; Wen, Xiaotao ; Zhang, Hua ; Zhu, Yunfeng ; Deng, Chengxiang</creatorcontrib><description>Seismic signal can be expressed by nonstationary convolution model (NCM) which integrates acoustic impedance (AI), attenuation factor (AF) and source wavelet (SW) into a single formula. Although it provides attractive potential to invert AI, AF and SW, simultaneously, effective joint inversion algorithm has not been developed because of the extreme instability of this nonlinear inverse problem. In this paper, we propose an alternating optimization scheme to achieve this nonlinear joint inversion. Our algorithm repeatedly alternates among three subproblems corresponding to AI, AF and SW recovery until changes in inverted models become smaller than the user-defined tolerances. Also, when we optimize one parameter, other two parameters are fixed. NCM is an explicit linear formula for AI; therefore, AI recovery is accomplished by linear inversion which is regularized by low-frequency model and isotropy total variation domain sparse constraints. However, NCM is a complicated nonlinear formula for AF. To facilitate the AF inversion, we propose a centroid frequency-based attenuation tomography method whose forward operator and observations are acquired from the time-varying wavelet amplitude spectra which is estimated according to Gabor domain factorization of NCM. SW is decoupled from NCM based on Toeplitz structure constraint, and we obtain an orthogonal wavelet transform domain sparse regularized SW inverse subproblem. Split Bregman technique is adopted to optimize AI and SW inverse subproblems. Numerical test and field data application confirm that the proposed nonstationary seismic inversion algorithm can stably generate accurate estimates of AI, AF and SW, simultaneously.</description><identifier>ISSN: 1895-6572</identifier><identifier>EISSN: 1895-7455</identifier><identifier>DOI: 10.1007/s11600-021-00555-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acoustic attenuation ; Acoustic impedance ; Algorithms ; Audio frequencies ; Centroids ; Convolution ; Domains ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Impedance ; Inverse problems ; Isotropy ; Mathematical models ; Optimization ; Parameters ; Recovery ; Research Article - Applied Geophysics ; Seismic stability ; Seismic surveys ; Structural Geology ; Tolerances ; Wave attenuation ; Wavelet transforms</subject><ispartof>Acta geophysica, 2021-04, Vol.69 (2), p.459-481</ispartof><rights>Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2021</rights><rights>Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-af387c8eebb2c3ed7f9c2e8cbfc20af41492849d2de88804b45c02964b9e3c7b3</citedby><cites>FETCH-LOGICAL-c319t-af387c8eebb2c3ed7f9c2e8cbfc20af41492849d2de88804b45c02964b9e3c7b3</cites><orcidid>0000-0003-1680-1980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11600-021-00555-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11600-021-00555-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hao, Yaju</creatorcontrib><creatorcontrib>Wen, Xiaotao</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Zhu, Yunfeng</creatorcontrib><creatorcontrib>Deng, Chengxiang</creatorcontrib><title>Nonstationary seismic inversion: joint estimation for acoustic impedance, attenuation factor and source wavelet</title><title>Acta geophysica</title><addtitle>Acta Geophys</addtitle><description>Seismic signal can be expressed by nonstationary convolution model (NCM) which integrates acoustic impedance (AI), attenuation factor (AF) and source wavelet (SW) into a single formula. Although it provides attractive potential to invert AI, AF and SW, simultaneously, effective joint inversion algorithm has not been developed because of the extreme instability of this nonlinear inverse problem. In this paper, we propose an alternating optimization scheme to achieve this nonlinear joint inversion. Our algorithm repeatedly alternates among three subproblems corresponding to AI, AF and SW recovery until changes in inverted models become smaller than the user-defined tolerances. Also, when we optimize one parameter, other two parameters are fixed. NCM is an explicit linear formula for AI; therefore, AI recovery is accomplished by linear inversion which is regularized by low-frequency model and isotropy total variation domain sparse constraints. However, NCM is a complicated nonlinear formula for AF. To facilitate the AF inversion, we propose a centroid frequency-based attenuation tomography method whose forward operator and observations are acquired from the time-varying wavelet amplitude spectra which is estimated according to Gabor domain factorization of NCM. SW is decoupled from NCM based on Toeplitz structure constraint, and we obtain an orthogonal wavelet transform domain sparse regularized SW inverse subproblem. Split Bregman technique is adopted to optimize AI and SW inverse subproblems. Numerical test and field data application confirm that the proposed nonstationary seismic inversion algorithm can stably generate accurate estimates of AI, AF and SW, simultaneously.</description><subject>Acoustic attenuation</subject><subject>Acoustic impedance</subject><subject>Algorithms</subject><subject>Audio frequencies</subject><subject>Centroids</subject><subject>Convolution</subject><subject>Domains</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Impedance</subject><subject>Inverse problems</subject><subject>Isotropy</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Recovery</subject><subject>Research Article - Applied Geophysics</subject><subject>Seismic stability</subject><subject>Seismic surveys</subject><subject>Structural Geology</subject><subject>Tolerances</subject><subject>Wave attenuation</subject><subject>Wavelet transforms</subject><issn>1895-6572</issn><issn>1895-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAq9Ekm-xmvUnxHxS96Dlks7OypU1qkq20n97ULXjzNMPwezNvHkKXjN4wSqvbyFhJKaGcEUqllGR3hCZM1ZJUQsrjQ1_Kip-isxgXlJaCMj5B_tW7mEzqvTNhiyP0cdVb3LsNhJiHd3jhe5cwxNSvfjHc-YCN9UOeZHC1htY4C9fYpARuODDGpj3mWhz9ECzgb7OBJaRzdNKZZYSLQ52ij8eH99kzmb89vczu58QWrE7EdIWqrAJoGm4LaKuuthyUbTrLqekEEzVXom55C0opKhohLeV1KZoaCls1xRRdjXvXwX8N2b1eZB8un9RcMlVJqVSRKT5SNvgYA3R6HfKbYasZ1ftg9RiszsHq32D1LouKURQz7D4h_K3-R_UD9Vt_Ww</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Hao, Yaju</creator><creator>Wen, Xiaotao</creator><creator>Zhang, Hua</creator><creator>Zhu, Yunfeng</creator><creator>Deng, Chengxiang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1680-1980</orcidid></search><sort><creationdate>20210401</creationdate><title>Nonstationary seismic inversion: joint estimation for acoustic impedance, attenuation factor and source wavelet</title><author>Hao, Yaju ; Wen, Xiaotao ; Zhang, Hua ; Zhu, Yunfeng ; Deng, Chengxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-af387c8eebb2c3ed7f9c2e8cbfc20af41492849d2de88804b45c02964b9e3c7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic attenuation</topic><topic>Acoustic impedance</topic><topic>Algorithms</topic><topic>Audio frequencies</topic><topic>Centroids</topic><topic>Convolution</topic><topic>Domains</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Impedance</topic><topic>Inverse problems</topic><topic>Isotropy</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Recovery</topic><topic>Research Article - Applied Geophysics</topic><topic>Seismic stability</topic><topic>Seismic surveys</topic><topic>Structural Geology</topic><topic>Tolerances</topic><topic>Wave attenuation</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Yaju</creatorcontrib><creatorcontrib>Wen, Xiaotao</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Zhu, Yunfeng</creatorcontrib><creatorcontrib>Deng, Chengxiang</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta geophysica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Yaju</au><au>Wen, Xiaotao</au><au>Zhang, Hua</au><au>Zhu, Yunfeng</au><au>Deng, Chengxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonstationary seismic inversion: joint estimation for acoustic impedance, attenuation factor and source wavelet</atitle><jtitle>Acta geophysica</jtitle><stitle>Acta Geophys</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>69</volume><issue>2</issue><spage>459</spage><epage>481</epage><pages>459-481</pages><issn>1895-6572</issn><eissn>1895-7455</eissn><abstract>Seismic signal can be expressed by nonstationary convolution model (NCM) which integrates acoustic impedance (AI), attenuation factor (AF) and source wavelet (SW) into a single formula. Although it provides attractive potential to invert AI, AF and SW, simultaneously, effective joint inversion algorithm has not been developed because of the extreme instability of this nonlinear inverse problem. In this paper, we propose an alternating optimization scheme to achieve this nonlinear joint inversion. Our algorithm repeatedly alternates among three subproblems corresponding to AI, AF and SW recovery until changes in inverted models become smaller than the user-defined tolerances. Also, when we optimize one parameter, other two parameters are fixed. NCM is an explicit linear formula for AI; therefore, AI recovery is accomplished by linear inversion which is regularized by low-frequency model and isotropy total variation domain sparse constraints. However, NCM is a complicated nonlinear formula for AF. To facilitate the AF inversion, we propose a centroid frequency-based attenuation tomography method whose forward operator and observations are acquired from the time-varying wavelet amplitude spectra which is estimated according to Gabor domain factorization of NCM. SW is decoupled from NCM based on Toeplitz structure constraint, and we obtain an orthogonal wavelet transform domain sparse regularized SW inverse subproblem. Split Bregman technique is adopted to optimize AI and SW inverse subproblems. Numerical test and field data application confirm that the proposed nonstationary seismic inversion algorithm can stably generate accurate estimates of AI, AF and SW, simultaneously.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11600-021-00555-z</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-1680-1980</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1895-6572 |
ispartof | Acta geophysica, 2021-04, Vol.69 (2), p.459-481 |
issn | 1895-6572 1895-7455 |
language | eng |
recordid | cdi_proquest_journals_2518755883 |
source | SpringerNature Journals |
subjects | Acoustic attenuation Acoustic impedance Algorithms Audio frequencies Centroids Convolution Domains Earth and Environmental Science Earth Sciences Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Impedance Inverse problems Isotropy Mathematical models Optimization Parameters Recovery Research Article - Applied Geophysics Seismic stability Seismic surveys Structural Geology Tolerances Wave attenuation Wavelet transforms |
title | Nonstationary seismic inversion: joint estimation for acoustic impedance, attenuation factor and source wavelet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonstationary%20seismic%20inversion:%20joint%20estimation%20for%20acoustic%20impedance,%20attenuation%20factor%20and%20source%20wavelet&rft.jtitle=Acta%20geophysica&rft.au=Hao,%20Yaju&rft.date=2021-04-01&rft.volume=69&rft.issue=2&rft.spage=459&rft.epage=481&rft.pages=459-481&rft.issn=1895-6572&rft.eissn=1895-7455&rft_id=info:doi/10.1007/s11600-021-00555-z&rft_dat=%3Cproquest_cross%3E2518755883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518755883&rft_id=info:pmid/&rfr_iscdi=true |