Single‐Unit‐Cell Catalysis of CO2 Electroreduction over Sub‐1 nm Cu9S5 Nanowires

As a bridge between nanocrystal catalysts and single‐atom catalysts, single‐unit‐cell catalysts seem at first glance to be unavailable for catalysis due to quantum effects and synthetic difficulties. Here, 24 nm Cu9S5 nanowires are synthesized via the LaMer pathway. Interestingly, when polyoxometala...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2021-04, Vol.11 (16), p.n/a
Hauptverfasser: Yang, Deren, Zuo, Shouwei, Yang, Haozhou, Wang, Xun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page
container_title Advanced energy materials
container_volume 11
creator Yang, Deren
Zuo, Shouwei
Yang, Haozhou
Wang, Xun
description As a bridge between nanocrystal catalysts and single‐atom catalysts, single‐unit‐cell catalysts seem at first glance to be unavailable for catalysis due to quantum effects and synthetic difficulties. Here, 24 nm Cu9S5 nanowires are synthesized via the LaMer pathway. Interestingly, when polyoxometalate (POM) clusters are introduced during the nucleation process, the 0.9 nm Cu9S5 nanowires are finally formed via covalent co‐assembly, analog to A–B–A–B‐type block co‐polymerization in the polymer field (“A” and “B” represent Cu9S5 unit cells and POM clusters, respectively). Multiple characterizations show that Cu9S5 exists as single‐unit‐cell structure. Therefore, each unit cell can work as an isolated active site. The single‐unit‐cell structure exhibits higher electrocatalytic activity and Faradaic efficiency (FE) of formic acid (82.0% at −0.8 V vs reversible hydrogen electrode (RHE)) during CO2 electroreduction, while the nanocrystal structure generates HCOO−, methanol, and ethanol with low FEs. This study suggests that the single‐unit‐cell catalyst displays great potential for precise catalysis by the finite size effect. Analog to A–B–A–B‐type block co‐polymerization, Cu9S5 unit cells, and polyoxometalate clusters can assemble into sub‐1 nm Cu9S5 nanowires. Multiple characterizations indicate that each Cu9S5 unit cell works as an isolated active site during CO2 electroreduction, achieving a highest faradaic efficiency (HCOO‐) of 82.0%. This work opens up the novel possibility of designing a catalytic pathway on single‐unit‐cell catalyst.
doi_str_mv 10.1002/aenm.202100272
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2518661849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518661849</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2702-c999d033c272703e6b63419b7c1d86e667ca3174ec6076a05048a5289baf0b073</originalsourceid><addsrcrecordid>eNo9UMtuwjAQtKpWKqJce7bUc-jaTuz4iCL6kCgcKL1ajjEoyDjUSYpy6yf0G_slNaJiL7Mjze6MBqF7AmMCQB-19fsxBXoigl6hAeEkTXiewvVlZ_QWjZpmB3FSSYCxAfpYVn7r7O_3z8pXbYTCOocL3WrXN1WD6w0uFhRPnTVtqINdd6atao_rLxvwsivjBcF-j4tOLjM8174-VsE2d-hmo11jR_84RKun6XvxkswWz6_FZJZsqQCaGCnlOuYwMbMAZnnJWUpkKQxZ59xyLoxmRKTWcBBcQwZprjOay1JvoATBhujh_PcQ6s_ONq3a1V3w0VLRjOSckzyVUSXPqmPlbK8Oodrr0CsC6lSXOnWnLt2pyXT-dmHsD3L1ZR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518661849</pqid></control><display><type>article</type><title>Single‐Unit‐Cell Catalysis of CO2 Electroreduction over Sub‐1 nm Cu9S5 Nanowires</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Deren ; Zuo, Shouwei ; Yang, Haozhou ; Wang, Xun</creator><creatorcontrib>Yang, Deren ; Zuo, Shouwei ; Yang, Haozhou ; Wang, Xun</creatorcontrib><description>As a bridge between nanocrystal catalysts and single‐atom catalysts, single‐unit‐cell catalysts seem at first glance to be unavailable for catalysis due to quantum effects and synthetic difficulties. Here, 24 nm Cu9S5 nanowires are synthesized via the LaMer pathway. Interestingly, when polyoxometalate (POM) clusters are introduced during the nucleation process, the 0.9 nm Cu9S5 nanowires are finally formed via covalent co‐assembly, analog to A–B–A–B‐type block co‐polymerization in the polymer field (“A” and “B” represent Cu9S5 unit cells and POM clusters, respectively). Multiple characterizations show that Cu9S5 exists as single‐unit‐cell structure. Therefore, each unit cell can work as an isolated active site. The single‐unit‐cell structure exhibits higher electrocatalytic activity and Faradaic efficiency (FE) of formic acid (82.0% at −0.8 V vs reversible hydrogen electrode (RHE)) during CO2 electroreduction, while the nanocrystal structure generates HCOO−, methanol, and ethanol with low FEs. This study suggests that the single‐unit‐cell catalyst displays great potential for precise catalysis by the finite size effect. Analog to A–B–A–B‐type block co‐polymerization, Cu9S5 unit cells, and polyoxometalate clusters can assemble into sub‐1 nm Cu9S5 nanowires. Multiple characterizations indicate that each Cu9S5 unit cell works as an isolated active site during CO2 electroreduction, achieving a highest faradaic efficiency (HCOO‐) of 82.0%. This work opens up the novel possibility of designing a catalytic pathway on single‐unit‐cell catalyst.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202100272</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Catalysis ; Clusters ; CO2 electroreduction ; Electrowinning ; Ethanol ; Formic acid ; Nanocrystals ; Nanowires ; Nucleation ; polyoxometalate clusters ; Polyoxometallates ; precise catalysis ; Single atom catalysts ; single‐unit‐cell catalysts ; Size effects ; Unit cell</subject><ispartof>Advanced energy materials, 2021-04, Vol.11 (16), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8066-4450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202100272$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202100272$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Yang, Deren</creatorcontrib><creatorcontrib>Zuo, Shouwei</creatorcontrib><creatorcontrib>Yang, Haozhou</creatorcontrib><creatorcontrib>Wang, Xun</creatorcontrib><title>Single‐Unit‐Cell Catalysis of CO2 Electroreduction over Sub‐1 nm Cu9S5 Nanowires</title><title>Advanced energy materials</title><description>As a bridge between nanocrystal catalysts and single‐atom catalysts, single‐unit‐cell catalysts seem at first glance to be unavailable for catalysis due to quantum effects and synthetic difficulties. Here, 24 nm Cu9S5 nanowires are synthesized via the LaMer pathway. Interestingly, when polyoxometalate (POM) clusters are introduced during the nucleation process, the 0.9 nm Cu9S5 nanowires are finally formed via covalent co‐assembly, analog to A–B–A–B‐type block co‐polymerization in the polymer field (“A” and “B” represent Cu9S5 unit cells and POM clusters, respectively). Multiple characterizations show that Cu9S5 exists as single‐unit‐cell structure. Therefore, each unit cell can work as an isolated active site. The single‐unit‐cell structure exhibits higher electrocatalytic activity and Faradaic efficiency (FE) of formic acid (82.0% at −0.8 V vs reversible hydrogen electrode (RHE)) during CO2 electroreduction, while the nanocrystal structure generates HCOO−, methanol, and ethanol with low FEs. This study suggests that the single‐unit‐cell catalyst displays great potential for precise catalysis by the finite size effect. Analog to A–B–A–B‐type block co‐polymerization, Cu9S5 unit cells, and polyoxometalate clusters can assemble into sub‐1 nm Cu9S5 nanowires. Multiple characterizations indicate that each Cu9S5 unit cell works as an isolated active site during CO2 electroreduction, achieving a highest faradaic efficiency (HCOO‐) of 82.0%. This work opens up the novel possibility of designing a catalytic pathway on single‐unit‐cell catalyst.</description><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Clusters</subject><subject>CO2 electroreduction</subject><subject>Electrowinning</subject><subject>Ethanol</subject><subject>Formic acid</subject><subject>Nanocrystals</subject><subject>Nanowires</subject><subject>Nucleation</subject><subject>polyoxometalate clusters</subject><subject>Polyoxometallates</subject><subject>precise catalysis</subject><subject>Single atom catalysts</subject><subject>single‐unit‐cell catalysts</subject><subject>Size effects</subject><subject>Unit cell</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UMtuwjAQtKpWKqJce7bUc-jaTuz4iCL6kCgcKL1ajjEoyDjUSYpy6yf0G_slNaJiL7Mjze6MBqF7AmMCQB-19fsxBXoigl6hAeEkTXiewvVlZ_QWjZpmB3FSSYCxAfpYVn7r7O_3z8pXbYTCOocL3WrXN1WD6w0uFhRPnTVtqINdd6atao_rLxvwsivjBcF-j4tOLjM8174-VsE2d-hmo11jR_84RKun6XvxkswWz6_FZJZsqQCaGCnlOuYwMbMAZnnJWUpkKQxZ59xyLoxmRKTWcBBcQwZprjOay1JvoATBhujh_PcQ6s_ONq3a1V3w0VLRjOSckzyVUSXPqmPlbK8Oodrr0CsC6lSXOnWnLt2pyXT-dmHsD3L1ZR0</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yang, Deren</creator><creator>Zuo, Shouwei</creator><creator>Yang, Haozhou</creator><creator>Wang, Xun</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8066-4450</orcidid></search><sort><creationdate>20210401</creationdate><title>Single‐Unit‐Cell Catalysis of CO2 Electroreduction over Sub‐1 nm Cu9S5 Nanowires</title><author>Yang, Deren ; Zuo, Shouwei ; Yang, Haozhou ; Wang, Xun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2702-c999d033c272703e6b63419b7c1d86e667ca3174ec6076a05048a5289baf0b073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Clusters</topic><topic>CO2 electroreduction</topic><topic>Electrowinning</topic><topic>Ethanol</topic><topic>Formic acid</topic><topic>Nanocrystals</topic><topic>Nanowires</topic><topic>Nucleation</topic><topic>polyoxometalate clusters</topic><topic>Polyoxometallates</topic><topic>precise catalysis</topic><topic>Single atom catalysts</topic><topic>single‐unit‐cell catalysts</topic><topic>Size effects</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Deren</creatorcontrib><creatorcontrib>Zuo, Shouwei</creatorcontrib><creatorcontrib>Yang, Haozhou</creatorcontrib><creatorcontrib>Wang, Xun</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Deren</au><au>Zuo, Shouwei</au><au>Yang, Haozhou</au><au>Wang, Xun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single‐Unit‐Cell Catalysis of CO2 Electroreduction over Sub‐1 nm Cu9S5 Nanowires</atitle><jtitle>Advanced energy materials</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>11</volume><issue>16</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>As a bridge between nanocrystal catalysts and single‐atom catalysts, single‐unit‐cell catalysts seem at first glance to be unavailable for catalysis due to quantum effects and synthetic difficulties. Here, 24 nm Cu9S5 nanowires are synthesized via the LaMer pathway. Interestingly, when polyoxometalate (POM) clusters are introduced during the nucleation process, the 0.9 nm Cu9S5 nanowires are finally formed via covalent co‐assembly, analog to A–B–A–B‐type block co‐polymerization in the polymer field (“A” and “B” represent Cu9S5 unit cells and POM clusters, respectively). Multiple characterizations show that Cu9S5 exists as single‐unit‐cell structure. Therefore, each unit cell can work as an isolated active site. The single‐unit‐cell structure exhibits higher electrocatalytic activity and Faradaic efficiency (FE) of formic acid (82.0% at −0.8 V vs reversible hydrogen electrode (RHE)) during CO2 electroreduction, while the nanocrystal structure generates HCOO−, methanol, and ethanol with low FEs. This study suggests that the single‐unit‐cell catalyst displays great potential for precise catalysis by the finite size effect. Analog to A–B–A–B‐type block co‐polymerization, Cu9S5 unit cells, and polyoxometalate clusters can assemble into sub‐1 nm Cu9S5 nanowires. Multiple characterizations indicate that each Cu9S5 unit cell works as an isolated active site during CO2 electroreduction, achieving a highest faradaic efficiency (HCOO‐) of 82.0%. This work opens up the novel possibility of designing a catalytic pathway on single‐unit‐cell catalyst.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202100272</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8066-4450</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2021-04, Vol.11 (16), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2518661849
source Wiley Online Library Journals Frontfile Complete
subjects Carbon dioxide
Catalysis
Clusters
CO2 electroreduction
Electrowinning
Ethanol
Formic acid
Nanocrystals
Nanowires
Nucleation
polyoxometalate clusters
Polyoxometallates
precise catalysis
Single atom catalysts
single‐unit‐cell catalysts
Size effects
Unit cell
title Single‐Unit‐Cell Catalysis of CO2 Electroreduction over Sub‐1 nm Cu9S5 Nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%E2%80%90Unit%E2%80%90Cell%20Catalysis%20of%20CO2%20Electroreduction%20over%20Sub%E2%80%901%20nm%20Cu9S5%20Nanowires&rft.jtitle=Advanced%20energy%20materials&rft.au=Yang,%20Deren&rft.date=2021-04-01&rft.volume=11&rft.issue=16&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202100272&rft_dat=%3Cproquest_wiley%3E2518661849%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518661849&rft_id=info:pmid/&rfr_iscdi=true