MULTICAST: MULTI Confirmation-level Alarm SysTem based on CNN and LSTM to mitigate false alarms for handgun detection in video-surveillance
Despite the constant advances in computer vision, integrating modern single-image detectors in real-time handgun alarm systems in video-surveillance is still debatable. Using such detectors still implies a high number of false alarms and false negatives. In this context, most existent studies select...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-05 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Olmos, Roberto Tabik, Siham Perez-Hernandez, Francisco Lamas, Alberto Herrera, Francisco |
description | Despite the constant advances in computer vision, integrating modern single-image detectors in real-time handgun alarm systems in video-surveillance is still debatable. Using such detectors still implies a high number of false alarms and false negatives. In this context, most existent studies select one of the latest single-image detectors and train it on a better dataset or use some pre-processing, post-processing or data-fusion approach to further reduce false alarms. However, none of these works tried to exploit the temporal information present in the videos to mitigate false detections. This paper presents a new system, called MULTI Confirmation-level Alarm SysTem based on Convolutional Neural Networks (CNN) and Long Short Term Memory networks (LSTM) (MULTICAST), that leverages not only the spacial information but also the temporal information existent in the videos for a more reliable handgun detection. MULTICAST consists of three stages, i) a handgun detection stage, ii) a CNN-based spacial confirmation stage and iii) LSTM-based temporal confirmation stage. The temporal confirmation stage uses the positions of the detected handgun in previous instants to predict its trajectory in the next frame. Our experiments show that MULTICAST reduces by 80% the number of false alarms with respect to Faster R-CNN based-single-image detector, which makes it more useful in providing more effective and rapid security responses. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2518560463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518560463</sourcerecordid><originalsourceid>FETCH-proquest_journals_25185604633</originalsourceid><addsrcrecordid>eNqNjM-KwjAchIMgrKy-w4DnQk1sV7xJWdkF9dJ4lmh_1UiarEla2Gfwpf2DD-BpBub7pscGXIhJMpty_sFGIZzTNOX5F88yMWDX9XYlf4tFKed4VhTO1to3KmpnE0MdGSyM8g3K_yCpwV4FquAsis0GylZYlXKN6NDoqI8qEmplAkE9pIDaeZzu2LG1qCjS4fELbdHpilwSWt-RNkbZAw1Z_6mOXvnJxstvWfwkf95dWgpxd3att_dpx7PJLMvTaS7Ee9QNHkJSng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518560463</pqid></control><display><type>article</type><title>MULTICAST: MULTI Confirmation-level Alarm SysTem based on CNN and LSTM to mitigate false alarms for handgun detection in video-surveillance</title><source>Free E- Journals</source><creator>Olmos, Roberto ; Tabik, Siham ; Perez-Hernandez, Francisco ; Lamas, Alberto ; Herrera, Francisco</creator><creatorcontrib>Olmos, Roberto ; Tabik, Siham ; Perez-Hernandez, Francisco ; Lamas, Alberto ; Herrera, Francisco</creatorcontrib><description>Despite the constant advances in computer vision, integrating modern single-image detectors in real-time handgun alarm systems in video-surveillance is still debatable. Using such detectors still implies a high number of false alarms and false negatives. In this context, most existent studies select one of the latest single-image detectors and train it on a better dataset or use some pre-processing, post-processing or data-fusion approach to further reduce false alarms. However, none of these works tried to exploit the temporal information present in the videos to mitigate false detections. This paper presents a new system, called MULTI Confirmation-level Alarm SysTem based on Convolutional Neural Networks (CNN) and Long Short Term Memory networks (LSTM) (MULTICAST), that leverages not only the spacial information but also the temporal information existent in the videos for a more reliable handgun detection. MULTICAST consists of three stages, i) a handgun detection stage, ii) a CNN-based spacial confirmation stage and iii) LSTM-based temporal confirmation stage. The temporal confirmation stage uses the positions of the detected handgun in previous instants to predict its trajectory in the next frame. Our experiments show that MULTICAST reduces by 80% the number of false alarms with respect to Faster R-CNN based-single-image detector, which makes it more useful in providing more effective and rapid security responses.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alarm systems ; Alarms ; Artificial neural networks ; Computer vision ; Data integration ; Detectors ; False alarms ; Multicasting ; Post-processing ; Sensors ; Surveillance ; Video</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Olmos, Roberto</creatorcontrib><creatorcontrib>Tabik, Siham</creatorcontrib><creatorcontrib>Perez-Hernandez, Francisco</creatorcontrib><creatorcontrib>Lamas, Alberto</creatorcontrib><creatorcontrib>Herrera, Francisco</creatorcontrib><title>MULTICAST: MULTI Confirmation-level Alarm SysTem based on CNN and LSTM to mitigate false alarms for handgun detection in video-surveillance</title><title>arXiv.org</title><description>Despite the constant advances in computer vision, integrating modern single-image detectors in real-time handgun alarm systems in video-surveillance is still debatable. Using such detectors still implies a high number of false alarms and false negatives. In this context, most existent studies select one of the latest single-image detectors and train it on a better dataset or use some pre-processing, post-processing or data-fusion approach to further reduce false alarms. However, none of these works tried to exploit the temporal information present in the videos to mitigate false detections. This paper presents a new system, called MULTI Confirmation-level Alarm SysTem based on Convolutional Neural Networks (CNN) and Long Short Term Memory networks (LSTM) (MULTICAST), that leverages not only the spacial information but also the temporal information existent in the videos for a more reliable handgun detection. MULTICAST consists of three stages, i) a handgun detection stage, ii) a CNN-based spacial confirmation stage and iii) LSTM-based temporal confirmation stage. The temporal confirmation stage uses the positions of the detected handgun in previous instants to predict its trajectory in the next frame. Our experiments show that MULTICAST reduces by 80% the number of false alarms with respect to Faster R-CNN based-single-image detector, which makes it more useful in providing more effective and rapid security responses.</description><subject>Alarm systems</subject><subject>Alarms</subject><subject>Artificial neural networks</subject><subject>Computer vision</subject><subject>Data integration</subject><subject>Detectors</subject><subject>False alarms</subject><subject>Multicasting</subject><subject>Post-processing</subject><subject>Sensors</subject><subject>Surveillance</subject><subject>Video</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjM-KwjAchIMgrKy-w4DnQk1sV7xJWdkF9dJ4lmh_1UiarEla2Gfwpf2DD-BpBub7pscGXIhJMpty_sFGIZzTNOX5F88yMWDX9XYlf4tFKed4VhTO1to3KmpnE0MdGSyM8g3K_yCpwV4FquAsis0GylZYlXKN6NDoqI8qEmplAkE9pIDaeZzu2LG1qCjS4fELbdHpilwSWt-RNkbZAw1Z_6mOXvnJxstvWfwkf95dWgpxd3att_dpx7PJLMvTaS7Ee9QNHkJSng</recordid><startdate>20210503</startdate><enddate>20210503</enddate><creator>Olmos, Roberto</creator><creator>Tabik, Siham</creator><creator>Perez-Hernandez, Francisco</creator><creator>Lamas, Alberto</creator><creator>Herrera, Francisco</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210503</creationdate><title>MULTICAST: MULTI Confirmation-level Alarm SysTem based on CNN and LSTM to mitigate false alarms for handgun detection in video-surveillance</title><author>Olmos, Roberto ; Tabik, Siham ; Perez-Hernandez, Francisco ; Lamas, Alberto ; Herrera, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25185604633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alarm systems</topic><topic>Alarms</topic><topic>Artificial neural networks</topic><topic>Computer vision</topic><topic>Data integration</topic><topic>Detectors</topic><topic>False alarms</topic><topic>Multicasting</topic><topic>Post-processing</topic><topic>Sensors</topic><topic>Surveillance</topic><topic>Video</topic><toplevel>online_resources</toplevel><creatorcontrib>Olmos, Roberto</creatorcontrib><creatorcontrib>Tabik, Siham</creatorcontrib><creatorcontrib>Perez-Hernandez, Francisco</creatorcontrib><creatorcontrib>Lamas, Alberto</creatorcontrib><creatorcontrib>Herrera, Francisco</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olmos, Roberto</au><au>Tabik, Siham</au><au>Perez-Hernandez, Francisco</au><au>Lamas, Alberto</au><au>Herrera, Francisco</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MULTICAST: MULTI Confirmation-level Alarm SysTem based on CNN and LSTM to mitigate false alarms for handgun detection in video-surveillance</atitle><jtitle>arXiv.org</jtitle><date>2021-05-03</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Despite the constant advances in computer vision, integrating modern single-image detectors in real-time handgun alarm systems in video-surveillance is still debatable. Using such detectors still implies a high number of false alarms and false negatives. In this context, most existent studies select one of the latest single-image detectors and train it on a better dataset or use some pre-processing, post-processing or data-fusion approach to further reduce false alarms. However, none of these works tried to exploit the temporal information present in the videos to mitigate false detections. This paper presents a new system, called MULTI Confirmation-level Alarm SysTem based on Convolutional Neural Networks (CNN) and Long Short Term Memory networks (LSTM) (MULTICAST), that leverages not only the spacial information but also the temporal information existent in the videos for a more reliable handgun detection. MULTICAST consists of three stages, i) a handgun detection stage, ii) a CNN-based spacial confirmation stage and iii) LSTM-based temporal confirmation stage. The temporal confirmation stage uses the positions of the detected handgun in previous instants to predict its trajectory in the next frame. Our experiments show that MULTICAST reduces by 80% the number of false alarms with respect to Faster R-CNN based-single-image detector, which makes it more useful in providing more effective and rapid security responses.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2518560463 |
source | Free E- Journals |
subjects | Alarm systems Alarms Artificial neural networks Computer vision Data integration Detectors False alarms Multicasting Post-processing Sensors Surveillance Video |
title | MULTICAST: MULTI Confirmation-level Alarm SysTem based on CNN and LSTM to mitigate false alarms for handgun detection in video-surveillance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MULTICAST:%20MULTI%20Confirmation-level%20Alarm%20SysTem%20based%20on%20CNN%20and%20LSTM%20to%20mitigate%20false%20alarms%20for%20handgun%20detection%20in%20video-surveillance&rft.jtitle=arXiv.org&rft.au=Olmos,%20Roberto&rft.date=2021-05-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2518560463%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518560463&rft_id=info:pmid/&rfr_iscdi=true |