Improving chaos-based pseudo-random generators in finite-precision arithmetic
One of the widely-used ways in chaos-based cryptography to generate pseudo-random sequences is to use the least significant bits or digits of finite-precision numbers defined by the chaotic orbits. In this study, we show that the results obtained using such an approach are very prone to rounding err...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2021-03, Vol.104 (1), p.727-737 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 737 |
---|---|
container_issue | 1 |
container_start_page | 727 |
container_title | Nonlinear dynamics |
container_volume | 104 |
creator | Tutueva, Aleksandra V. Karimov, Timur I. Moysis, Lazaros Nepomuceno, Erivelton G. Volos, Christos Butusov, Denis N. |
description | One of the widely-used ways in chaos-based cryptography to generate pseudo-random sequences is to use the least significant bits or digits of finite-precision numbers defined by the chaotic orbits. In this study, we show that the results obtained using such an approach are very prone to rounding errors and discretization effects. Thus, it appears that the generated sequences are close to random even when parameters correspond to non-chaotic oscillations. In this study, we confirm that the actual source of pseudo-random properties of bits in a binary representation of numbers can not be chaos, but computer simulation. We propose a technique for determining the maximum number of bits that can be used as the output of a pseudo-random sequence generator including chaos-based algorithms. The considered approach involves evaluating the difference of the binary representation of two points obtained by different numerical methods of the same order of accuracy. Experimental results show that such estimation can significantly increase the performance of the existing chaos-based generators. The obtained results can be used to reconsider and improve chaos-based cryptographic algorithms. |
doi_str_mv | 10.1007/s11071-021-06246-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518557853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518557853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-af8c8a3446b978f4cbe8406f397abde5d9370fc41455e6bd2b2cbdf5d097d5ba3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrAdfTkNplZSvFSqLhR6C7k2qY4mZpMBd_e0RHcuTiczf_95_AhdEngmgDIm0IISIKBjlNTXmM4QjMiJMO0btfHaAYt5RhaWJ-is1J2AMAoNDP0tOz2uf-IaVPZre4LNrp4V-2LP7geZ51c31Ubn3zWQ59LFVMVYoqDx_vsbSyxT5XOcdh2foj2HJ0E_Vb8xe-eo9f7u5fFI149PywXtytsWc0GrENjG804r00rm8Ct8Q2HOrBWauO8cC2TECwnXAhfG0cNtcYF4aCVThjN5uhq6h1_fz_4Mqhdf8hpPKmoII0QshFsTNEpZXNfSvZB7XPsdP5UBNS3NjVpU6M29aNNwQixCSpjOG18_qv-h_oCQtpxsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518557853</pqid></control><display><type>article</type><title>Improving chaos-based pseudo-random generators in finite-precision arithmetic</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tutueva, Aleksandra V. ; Karimov, Timur I. ; Moysis, Lazaros ; Nepomuceno, Erivelton G. ; Volos, Christos ; Butusov, Denis N.</creator><creatorcontrib>Tutueva, Aleksandra V. ; Karimov, Timur I. ; Moysis, Lazaros ; Nepomuceno, Erivelton G. ; Volos, Christos ; Butusov, Denis N.</creatorcontrib><description>One of the widely-used ways in chaos-based cryptography to generate pseudo-random sequences is to use the least significant bits or digits of finite-precision numbers defined by the chaotic orbits. In this study, we show that the results obtained using such an approach are very prone to rounding errors and discretization effects. Thus, it appears that the generated sequences are close to random even when parameters correspond to non-chaotic oscillations. In this study, we confirm that the actual source of pseudo-random properties of bits in a binary representation of numbers can not be chaos, but computer simulation. We propose a technique for determining the maximum number of bits that can be used as the output of a pseudo-random sequence generator including chaos-based algorithms. The considered approach involves evaluating the difference of the binary representation of two points obtained by different numerical methods of the same order of accuracy. Experimental results show that such estimation can significantly increase the performance of the existing chaos-based generators. The obtained results can be used to reconsider and improve chaos-based cryptographic algorithms.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-06246-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Automotive Engineering ; Classical Mechanics ; Computer simulation ; Control ; Cryptography ; Dynamical Systems ; Engineering ; Generators ; Mechanical Engineering ; Numerical methods ; Original Paper ; Pseudorandom sequences ; Representations ; Rounding ; Vibration</subject><ispartof>Nonlinear dynamics, 2021-03, Vol.104 (1), p.727-737</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-af8c8a3446b978f4cbe8406f397abde5d9370fc41455e6bd2b2cbdf5d097d5ba3</citedby><cites>FETCH-LOGICAL-c363t-af8c8a3446b978f4cbe8406f397abde5d9370fc41455e6bd2b2cbdf5d097d5ba3</cites><orcidid>0000-0002-8941-4220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-06246-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-06246-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Tutueva, Aleksandra V.</creatorcontrib><creatorcontrib>Karimov, Timur I.</creatorcontrib><creatorcontrib>Moysis, Lazaros</creatorcontrib><creatorcontrib>Nepomuceno, Erivelton G.</creatorcontrib><creatorcontrib>Volos, Christos</creatorcontrib><creatorcontrib>Butusov, Denis N.</creatorcontrib><title>Improving chaos-based pseudo-random generators in finite-precision arithmetic</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>One of the widely-used ways in chaos-based cryptography to generate pseudo-random sequences is to use the least significant bits or digits of finite-precision numbers defined by the chaotic orbits. In this study, we show that the results obtained using such an approach are very prone to rounding errors and discretization effects. Thus, it appears that the generated sequences are close to random even when parameters correspond to non-chaotic oscillations. In this study, we confirm that the actual source of pseudo-random properties of bits in a binary representation of numbers can not be chaos, but computer simulation. We propose a technique for determining the maximum number of bits that can be used as the output of a pseudo-random sequence generator including chaos-based algorithms. The considered approach involves evaluating the difference of the binary representation of two points obtained by different numerical methods of the same order of accuracy. Experimental results show that such estimation can significantly increase the performance of the existing chaos-based generators. The obtained results can be used to reconsider and improve chaos-based cryptographic algorithms.</description><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Cryptography</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Generators</subject><subject>Mechanical Engineering</subject><subject>Numerical methods</subject><subject>Original Paper</subject><subject>Pseudorandom sequences</subject><subject>Representations</subject><subject>Rounding</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4GrAdfTkNplZSvFSqLhR6C7k2qY4mZpMBd_e0RHcuTiczf_95_AhdEngmgDIm0IISIKBjlNTXmM4QjMiJMO0btfHaAYt5RhaWJ-is1J2AMAoNDP0tOz2uf-IaVPZre4LNrp4V-2LP7geZ51c31Ubn3zWQ59LFVMVYoqDx_vsbSyxT5XOcdh2foj2HJ0E_Vb8xe-eo9f7u5fFI149PywXtytsWc0GrENjG804r00rm8Ct8Q2HOrBWauO8cC2TECwnXAhfG0cNtcYF4aCVThjN5uhq6h1_fz_4Mqhdf8hpPKmoII0QshFsTNEpZXNfSvZB7XPsdP5UBNS3NjVpU6M29aNNwQixCSpjOG18_qv-h_oCQtpxsQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Tutueva, Aleksandra V.</creator><creator>Karimov, Timur I.</creator><creator>Moysis, Lazaros</creator><creator>Nepomuceno, Erivelton G.</creator><creator>Volos, Christos</creator><creator>Butusov, Denis N.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8941-4220</orcidid></search><sort><creationdate>20210301</creationdate><title>Improving chaos-based pseudo-random generators in finite-precision arithmetic</title><author>Tutueva, Aleksandra V. ; Karimov, Timur I. ; Moysis, Lazaros ; Nepomuceno, Erivelton G. ; Volos, Christos ; Butusov, Denis N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-af8c8a3446b978f4cbe8406f397abde5d9370fc41455e6bd2b2cbdf5d097d5ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Cryptography</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Generators</topic><topic>Mechanical Engineering</topic><topic>Numerical methods</topic><topic>Original Paper</topic><topic>Pseudorandom sequences</topic><topic>Representations</topic><topic>Rounding</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tutueva, Aleksandra V.</creatorcontrib><creatorcontrib>Karimov, Timur I.</creatorcontrib><creatorcontrib>Moysis, Lazaros</creatorcontrib><creatorcontrib>Nepomuceno, Erivelton G.</creatorcontrib><creatorcontrib>Volos, Christos</creatorcontrib><creatorcontrib>Butusov, Denis N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tutueva, Aleksandra V.</au><au>Karimov, Timur I.</au><au>Moysis, Lazaros</au><au>Nepomuceno, Erivelton G.</au><au>Volos, Christos</au><au>Butusov, Denis N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving chaos-based pseudo-random generators in finite-precision arithmetic</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>104</volume><issue>1</issue><spage>727</spage><epage>737</epage><pages>727-737</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>One of the widely-used ways in chaos-based cryptography to generate pseudo-random sequences is to use the least significant bits or digits of finite-precision numbers defined by the chaotic orbits. In this study, we show that the results obtained using such an approach are very prone to rounding errors and discretization effects. Thus, it appears that the generated sequences are close to random even when parameters correspond to non-chaotic oscillations. In this study, we confirm that the actual source of pseudo-random properties of bits in a binary representation of numbers can not be chaos, but computer simulation. We propose a technique for determining the maximum number of bits that can be used as the output of a pseudo-random sequence generator including chaos-based algorithms. The considered approach involves evaluating the difference of the binary representation of two points obtained by different numerical methods of the same order of accuracy. Experimental results show that such estimation can significantly increase the performance of the existing chaos-based generators. The obtained results can be used to reconsider and improve chaos-based cryptographic algorithms.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-06246-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8941-4220</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2021-03, Vol.104 (1), p.727-737 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2518557853 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Automotive Engineering Classical Mechanics Computer simulation Control Cryptography Dynamical Systems Engineering Generators Mechanical Engineering Numerical methods Original Paper Pseudorandom sequences Representations Rounding Vibration |
title | Improving chaos-based pseudo-random generators in finite-precision arithmetic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20chaos-based%20pseudo-random%20generators%20in%20finite-precision%20arithmetic&rft.jtitle=Nonlinear%20dynamics&rft.au=Tutueva,%20Aleksandra%20V.&rft.date=2021-03-01&rft.volume=104&rft.issue=1&rft.spage=727&rft.epage=737&rft.pages=727-737&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-06246-0&rft_dat=%3Cproquest_cross%3E2518557853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518557853&rft_id=info:pmid/&rfr_iscdi=true |