Improving chaos-based pseudo-random generators in finite-precision arithmetic

One of the widely-used ways in chaos-based cryptography to generate pseudo-random sequences is to use the least significant bits or digits of finite-precision numbers defined by the chaotic orbits. In this study, we show that the results obtained using such an approach are very prone to rounding err...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2021-03, Vol.104 (1), p.727-737
Hauptverfasser: Tutueva, Aleksandra V., Karimov, Timur I., Moysis, Lazaros, Nepomuceno, Erivelton G., Volos, Christos, Butusov, Denis N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 737
container_issue 1
container_start_page 727
container_title Nonlinear dynamics
container_volume 104
creator Tutueva, Aleksandra V.
Karimov, Timur I.
Moysis, Lazaros
Nepomuceno, Erivelton G.
Volos, Christos
Butusov, Denis N.
description One of the widely-used ways in chaos-based cryptography to generate pseudo-random sequences is to use the least significant bits or digits of finite-precision numbers defined by the chaotic orbits. In this study, we show that the results obtained using such an approach are very prone to rounding errors and discretization effects. Thus, it appears that the generated sequences are close to random even when parameters correspond to non-chaotic oscillations. In this study, we confirm that the actual source of pseudo-random properties of bits in a binary representation of numbers can not be chaos, but computer simulation. We propose a technique for determining the maximum number of bits that can be used as the output of a pseudo-random sequence generator including chaos-based algorithms. The considered approach involves evaluating the difference of the binary representation of two points obtained by different numerical methods of the same order of accuracy. Experimental results show that such estimation can significantly increase the performance of the existing chaos-based generators. The obtained results can be used to reconsider and improve chaos-based cryptographic algorithms.
doi_str_mv 10.1007/s11071-021-06246-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518557853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518557853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-af8c8a3446b978f4cbe8406f397abde5d9370fc41455e6bd2b2cbdf5d097d5ba3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrAdfTkNplZSvFSqLhR6C7k2qY4mZpMBd_e0RHcuTiczf_95_AhdEngmgDIm0IISIKBjlNTXmM4QjMiJMO0btfHaAYt5RhaWJ-is1J2AMAoNDP0tOz2uf-IaVPZre4LNrp4V-2LP7geZ51c31Ubn3zWQ59LFVMVYoqDx_vsbSyxT5XOcdh2foj2HJ0E_Vb8xe-eo9f7u5fFI149PywXtytsWc0GrENjG804r00rm8Ct8Q2HOrBWauO8cC2TECwnXAhfG0cNtcYF4aCVThjN5uhq6h1_fz_4Mqhdf8hpPKmoII0QshFsTNEpZXNfSvZB7XPsdP5UBNS3NjVpU6M29aNNwQixCSpjOG18_qv-h_oCQtpxsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518557853</pqid></control><display><type>article</type><title>Improving chaos-based pseudo-random generators in finite-precision arithmetic</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tutueva, Aleksandra V. ; Karimov, Timur I. ; Moysis, Lazaros ; Nepomuceno, Erivelton G. ; Volos, Christos ; Butusov, Denis N.</creator><creatorcontrib>Tutueva, Aleksandra V. ; Karimov, Timur I. ; Moysis, Lazaros ; Nepomuceno, Erivelton G. ; Volos, Christos ; Butusov, Denis N.</creatorcontrib><description>One of the widely-used ways in chaos-based cryptography to generate pseudo-random sequences is to use the least significant bits or digits of finite-precision numbers defined by the chaotic orbits. In this study, we show that the results obtained using such an approach are very prone to rounding errors and discretization effects. Thus, it appears that the generated sequences are close to random even when parameters correspond to non-chaotic oscillations. In this study, we confirm that the actual source of pseudo-random properties of bits in a binary representation of numbers can not be chaos, but computer simulation. We propose a technique for determining the maximum number of bits that can be used as the output of a pseudo-random sequence generator including chaos-based algorithms. The considered approach involves evaluating the difference of the binary representation of two points obtained by different numerical methods of the same order of accuracy. Experimental results show that such estimation can significantly increase the performance of the existing chaos-based generators. The obtained results can be used to reconsider and improve chaos-based cryptographic algorithms.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-06246-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Automotive Engineering ; Classical Mechanics ; Computer simulation ; Control ; Cryptography ; Dynamical Systems ; Engineering ; Generators ; Mechanical Engineering ; Numerical methods ; Original Paper ; Pseudorandom sequences ; Representations ; Rounding ; Vibration</subject><ispartof>Nonlinear dynamics, 2021-03, Vol.104 (1), p.727-737</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-af8c8a3446b978f4cbe8406f397abde5d9370fc41455e6bd2b2cbdf5d097d5ba3</citedby><cites>FETCH-LOGICAL-c363t-af8c8a3446b978f4cbe8406f397abde5d9370fc41455e6bd2b2cbdf5d097d5ba3</cites><orcidid>0000-0002-8941-4220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-06246-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-06246-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Tutueva, Aleksandra V.</creatorcontrib><creatorcontrib>Karimov, Timur I.</creatorcontrib><creatorcontrib>Moysis, Lazaros</creatorcontrib><creatorcontrib>Nepomuceno, Erivelton G.</creatorcontrib><creatorcontrib>Volos, Christos</creatorcontrib><creatorcontrib>Butusov, Denis N.</creatorcontrib><title>Improving chaos-based pseudo-random generators in finite-precision arithmetic</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>One of the widely-used ways in chaos-based cryptography to generate pseudo-random sequences is to use the least significant bits or digits of finite-precision numbers defined by the chaotic orbits. In this study, we show that the results obtained using such an approach are very prone to rounding errors and discretization effects. Thus, it appears that the generated sequences are close to random even when parameters correspond to non-chaotic oscillations. In this study, we confirm that the actual source of pseudo-random properties of bits in a binary representation of numbers can not be chaos, but computer simulation. We propose a technique for determining the maximum number of bits that can be used as the output of a pseudo-random sequence generator including chaos-based algorithms. The considered approach involves evaluating the difference of the binary representation of two points obtained by different numerical methods of the same order of accuracy. Experimental results show that such estimation can significantly increase the performance of the existing chaos-based generators. The obtained results can be used to reconsider and improve chaos-based cryptographic algorithms.</description><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Cryptography</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Generators</subject><subject>Mechanical Engineering</subject><subject>Numerical methods</subject><subject>Original Paper</subject><subject>Pseudorandom sequences</subject><subject>Representations</subject><subject>Rounding</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4GrAdfTkNplZSvFSqLhR6C7k2qY4mZpMBd_e0RHcuTiczf_95_AhdEngmgDIm0IISIKBjlNTXmM4QjMiJMO0btfHaAYt5RhaWJ-is1J2AMAoNDP0tOz2uf-IaVPZre4LNrp4V-2LP7geZ51c31Ubn3zWQ59LFVMVYoqDx_vsbSyxT5XOcdh2foj2HJ0E_Vb8xe-eo9f7u5fFI149PywXtytsWc0GrENjG804r00rm8Ct8Q2HOrBWauO8cC2TECwnXAhfG0cNtcYF4aCVThjN5uhq6h1_fz_4Mqhdf8hpPKmoII0QshFsTNEpZXNfSvZB7XPsdP5UBNS3NjVpU6M29aNNwQixCSpjOG18_qv-h_oCQtpxsQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Tutueva, Aleksandra V.</creator><creator>Karimov, Timur I.</creator><creator>Moysis, Lazaros</creator><creator>Nepomuceno, Erivelton G.</creator><creator>Volos, Christos</creator><creator>Butusov, Denis N.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8941-4220</orcidid></search><sort><creationdate>20210301</creationdate><title>Improving chaos-based pseudo-random generators in finite-precision arithmetic</title><author>Tutueva, Aleksandra V. ; Karimov, Timur I. ; Moysis, Lazaros ; Nepomuceno, Erivelton G. ; Volos, Christos ; Butusov, Denis N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-af8c8a3446b978f4cbe8406f397abde5d9370fc41455e6bd2b2cbdf5d097d5ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Cryptography</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Generators</topic><topic>Mechanical Engineering</topic><topic>Numerical methods</topic><topic>Original Paper</topic><topic>Pseudorandom sequences</topic><topic>Representations</topic><topic>Rounding</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tutueva, Aleksandra V.</creatorcontrib><creatorcontrib>Karimov, Timur I.</creatorcontrib><creatorcontrib>Moysis, Lazaros</creatorcontrib><creatorcontrib>Nepomuceno, Erivelton G.</creatorcontrib><creatorcontrib>Volos, Christos</creatorcontrib><creatorcontrib>Butusov, Denis N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tutueva, Aleksandra V.</au><au>Karimov, Timur I.</au><au>Moysis, Lazaros</au><au>Nepomuceno, Erivelton G.</au><au>Volos, Christos</au><au>Butusov, Denis N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving chaos-based pseudo-random generators in finite-precision arithmetic</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>104</volume><issue>1</issue><spage>727</spage><epage>737</epage><pages>727-737</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>One of the widely-used ways in chaos-based cryptography to generate pseudo-random sequences is to use the least significant bits or digits of finite-precision numbers defined by the chaotic orbits. In this study, we show that the results obtained using such an approach are very prone to rounding errors and discretization effects. Thus, it appears that the generated sequences are close to random even when parameters correspond to non-chaotic oscillations. In this study, we confirm that the actual source of pseudo-random properties of bits in a binary representation of numbers can not be chaos, but computer simulation. We propose a technique for determining the maximum number of bits that can be used as the output of a pseudo-random sequence generator including chaos-based algorithms. The considered approach involves evaluating the difference of the binary representation of two points obtained by different numerical methods of the same order of accuracy. Experimental results show that such estimation can significantly increase the performance of the existing chaos-based generators. The obtained results can be used to reconsider and improve chaos-based cryptographic algorithms.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-06246-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8941-4220</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2021-03, Vol.104 (1), p.727-737
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2518557853
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Automotive Engineering
Classical Mechanics
Computer simulation
Control
Cryptography
Dynamical Systems
Engineering
Generators
Mechanical Engineering
Numerical methods
Original Paper
Pseudorandom sequences
Representations
Rounding
Vibration
title Improving chaos-based pseudo-random generators in finite-precision arithmetic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20chaos-based%20pseudo-random%20generators%20in%20finite-precision%20arithmetic&rft.jtitle=Nonlinear%20dynamics&rft.au=Tutueva,%20Aleksandra%20V.&rft.date=2021-03-01&rft.volume=104&rft.issue=1&rft.spage=727&rft.epage=737&rft.pages=727-737&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-06246-0&rft_dat=%3Cproquest_cross%3E2518557853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518557853&rft_id=info:pmid/&rfr_iscdi=true