Integrating Gravimetry Data With Thermal Infra‐Red Data From Satellites to Improve Efficiency of Operational Irrigation Advisory in South Asia

The rapid decline of groundwater resources in South Asia due to excessive irrigation during dry season requires awareness of optimal on‐field water requirements. Such information is currently provided on farmer cellphones through an operational Irrigation Advisory System (IAS). To minimize the cost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2021-04, Vol.57 (4), p.n/a
Hauptverfasser: Bose, Indira, Hossain, Faisal, Eldardiry, Hisham, Ahmad, Shahryar, Biswas, Nishan K., Bhatti, Ahmad Zeeshan, Lee, Hyongki, Aziz, Mazharul, Kamal Khan, Md. Shah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Water resources research
container_volume 57
creator Bose, Indira
Hossain, Faisal
Eldardiry, Hisham
Ahmad, Shahryar
Biswas, Nishan K.
Bhatti, Ahmad Zeeshan
Lee, Hyongki
Aziz, Mazharul
Kamal Khan, Md. Shah
description The rapid decline of groundwater resources in South Asia due to excessive irrigation during dry season requires awareness of optimal on‐field water requirements. Such information is currently provided on farmer cellphones through an operational Irrigation Advisory System (IAS). To minimize the cost of sending such irrigation advisory texts to farmers while maximizing impact of IAS on groundwater sustainability, we integrated Gravity Recovery and Climate Experiment (GRACE) data with Landsat Thermal Infrared (TIR) Imagery to target regions in greater need of the IAS service. We demonstrated the concept of an improved IAS over eight irrigation districts of the Ganges and Indus basins. The Surface Energy Balance Algorithm for Land (SEBAL) was used to monitor on‐field water consumption (evapotranspiration‐ET) over cropped areas using Landsat TIR data at plot‐scale spatial resolution. Comparison of SEBAL ET with crop water demand from Penman‐Monteith (FAO56) technique quantified the extent of overirrigation at the plot scale and provided a tangible pathway to microtarget the IAS service only to farmers with the largest groundwater use footprint, thereby improving the impact of the IAS service further. Our results suggested that an operational IAS that integrates GRACE and Landsat TIR data on average can save about 85% (80 million m3) of groundwater per dry season for irrigation districts of Northern India and 87% (or 150 million m3) per year for irrigation districts of Eastern Pakistan. Key Points An operational irrigation advisory was made more efficient with Gravity Recovery and Climate Experiment (GRACE) and Landsat Thermal data GRACE data identified rapidly depleting groundwater zones to allow strategic targeting of the irrigation advisory Landsat thermal data allowed plot scale strategic targeting of farmers with the highest groundwater waste to maximize water savings
doi_str_mv 10.1029/2020WR028654
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518477264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518477264</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3681-abee53bfd0b1bf029535218e22a84461c42937c8d56eec29df1956b0ae8701df3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWH92PkDAraP5nZ9lqW0tCEJb6XLIzNzUlJlJTdJKdz5Cn9EncWpduHJ1udyPc849CN1Qck8Jyx4YYWQxJSyNpThBPZoJESVZwk9RjxDBI8qz5BxdeL8ihAoZJz20n7QBlk4F0y7x2KmtaSC4HX5UQeGFCW94_gauUTWetNqpr8_9FKrjdeRsg2cqQF2bAB4HiyfN2tkt4KHWpjTQljtsNX5Zw8HAtgcV58zyZ8H9amu87bxMi2d201n1vVFX6Eyr2sP177xEr6PhfPAUPb-MJ4P-c6R4nNJIFQCSF7oiBS1097zkktEUGFOpEDEtBct4UqaVjAFKllWaZjIuiII0IbTS_BLdHnW7xO8b8CFf2Y3rIvqcSZqKJGGx6Ki7I1U6670Dna-daZTb5ZTkh87zv513OD_iH6aG3b9svpgOpkwyQvk39GKFUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518477264</pqid></control><display><type>article</type><title>Integrating Gravimetry Data With Thermal Infra‐Red Data From Satellites to Improve Efficiency of Operational Irrigation Advisory in South Asia</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><creator>Bose, Indira ; Hossain, Faisal ; Eldardiry, Hisham ; Ahmad, Shahryar ; Biswas, Nishan K. ; Bhatti, Ahmad Zeeshan ; Lee, Hyongki ; Aziz, Mazharul ; Kamal Khan, Md. Shah</creator><creatorcontrib>Bose, Indira ; Hossain, Faisal ; Eldardiry, Hisham ; Ahmad, Shahryar ; Biswas, Nishan K. ; Bhatti, Ahmad Zeeshan ; Lee, Hyongki ; Aziz, Mazharul ; Kamal Khan, Md. Shah</creatorcontrib><description>The rapid decline of groundwater resources in South Asia due to excessive irrigation during dry season requires awareness of optimal on‐field water requirements. Such information is currently provided on farmer cellphones through an operational Irrigation Advisory System (IAS). To minimize the cost of sending such irrigation advisory texts to farmers while maximizing impact of IAS on groundwater sustainability, we integrated Gravity Recovery and Climate Experiment (GRACE) data with Landsat Thermal Infrared (TIR) Imagery to target regions in greater need of the IAS service. We demonstrated the concept of an improved IAS over eight irrigation districts of the Ganges and Indus basins. The Surface Energy Balance Algorithm for Land (SEBAL) was used to monitor on‐field water consumption (evapotranspiration‐ET) over cropped areas using Landsat TIR data at plot‐scale spatial resolution. Comparison of SEBAL ET with crop water demand from Penman‐Monteith (FAO56) technique quantified the extent of overirrigation at the plot scale and provided a tangible pathway to microtarget the IAS service only to farmers with the largest groundwater use footprint, thereby improving the impact of the IAS service further. Our results suggested that an operational IAS that integrates GRACE and Landsat TIR data on average can save about 85% (80 million m3) of groundwater per dry season for irrigation districts of Northern India and 87% (or 150 million m3) per year for irrigation districts of Eastern Pakistan. Key Points An operational irrigation advisory was made more efficient with Gravity Recovery and Climate Experiment (GRACE) and Landsat Thermal data GRACE data identified rapidly depleting groundwater zones to allow strategic targeting of the irrigation advisory Landsat thermal data allowed plot scale strategic targeting of farmers with the highest groundwater waste to maximize water savings</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2020WR028654</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Crop water ; Data ; Dry season ; Energy balance ; Evapotranspiration ; Farmers ; GRACE (experiment) ; Gravimetry ; Gravity ; gravity recovery and climate experiment (GRACE) ; Groundwater ; Groundwater resources ; Imagery ; Infrared imagery ; Irrigation ; Irrigation districts ; Irrigation efficiency ; Irrigation systems ; Landsat ; Landsat satellites ; Optimization ; Remote sensing ; Satellite imagery ; Spatial discrimination ; Spatial resolution ; Surface energy ; Surface energy balance ; Surface properties ; Sustainability ; Target recognition ; thermal infrared ; Water consumption ; Water demand ; Water requirements ; Water resources</subject><ispartof>Water resources research, 2021-04, Vol.57 (4), p.n/a</ispartof><rights>2021. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3681-abee53bfd0b1bf029535218e22a84461c42937c8d56eec29df1956b0ae8701df3</citedby><cites>FETCH-LOGICAL-a3681-abee53bfd0b1bf029535218e22a84461c42937c8d56eec29df1956b0ae8701df3</cites><orcidid>0000-0001-9882-9535 ; 0000-0002-9789-3137 ; 0000-0001-5475-1772 ; 0000-0001-6192-3157 ; 0000-0002-2932-7459 ; 0000-0002-3568-281X ; 0000-0001-6478-7533 ; 0000-0002-5705-9869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020WR028654$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020WR028654$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,11516,27926,27927,45576,45577,46470,46894</link.rule.ids></links><search><creatorcontrib>Bose, Indira</creatorcontrib><creatorcontrib>Hossain, Faisal</creatorcontrib><creatorcontrib>Eldardiry, Hisham</creatorcontrib><creatorcontrib>Ahmad, Shahryar</creatorcontrib><creatorcontrib>Biswas, Nishan K.</creatorcontrib><creatorcontrib>Bhatti, Ahmad Zeeshan</creatorcontrib><creatorcontrib>Lee, Hyongki</creatorcontrib><creatorcontrib>Aziz, Mazharul</creatorcontrib><creatorcontrib>Kamal Khan, Md. Shah</creatorcontrib><title>Integrating Gravimetry Data With Thermal Infra‐Red Data From Satellites to Improve Efficiency of Operational Irrigation Advisory in South Asia</title><title>Water resources research</title><description>The rapid decline of groundwater resources in South Asia due to excessive irrigation during dry season requires awareness of optimal on‐field water requirements. Such information is currently provided on farmer cellphones through an operational Irrigation Advisory System (IAS). To minimize the cost of sending such irrigation advisory texts to farmers while maximizing impact of IAS on groundwater sustainability, we integrated Gravity Recovery and Climate Experiment (GRACE) data with Landsat Thermal Infrared (TIR) Imagery to target regions in greater need of the IAS service. We demonstrated the concept of an improved IAS over eight irrigation districts of the Ganges and Indus basins. The Surface Energy Balance Algorithm for Land (SEBAL) was used to monitor on‐field water consumption (evapotranspiration‐ET) over cropped areas using Landsat TIR data at plot‐scale spatial resolution. Comparison of SEBAL ET with crop water demand from Penman‐Monteith (FAO56) technique quantified the extent of overirrigation at the plot scale and provided a tangible pathway to microtarget the IAS service only to farmers with the largest groundwater use footprint, thereby improving the impact of the IAS service further. Our results suggested that an operational IAS that integrates GRACE and Landsat TIR data on average can save about 85% (80 million m3) of groundwater per dry season for irrigation districts of Northern India and 87% (or 150 million m3) per year for irrigation districts of Eastern Pakistan. Key Points An operational irrigation advisory was made more efficient with Gravity Recovery and Climate Experiment (GRACE) and Landsat Thermal data GRACE data identified rapidly depleting groundwater zones to allow strategic targeting of the irrigation advisory Landsat thermal data allowed plot scale strategic targeting of farmers with the highest groundwater waste to maximize water savings</description><subject>Algorithms</subject><subject>Crop water</subject><subject>Data</subject><subject>Dry season</subject><subject>Energy balance</subject><subject>Evapotranspiration</subject><subject>Farmers</subject><subject>GRACE (experiment)</subject><subject>Gravimetry</subject><subject>Gravity</subject><subject>gravity recovery and climate experiment (GRACE)</subject><subject>Groundwater</subject><subject>Groundwater resources</subject><subject>Imagery</subject><subject>Infrared imagery</subject><subject>Irrigation</subject><subject>Irrigation districts</subject><subject>Irrigation efficiency</subject><subject>Irrigation systems</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Optimization</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Surface energy</subject><subject>Surface energy balance</subject><subject>Surface properties</subject><subject>Sustainability</subject><subject>Target recognition</subject><subject>thermal infrared</subject><subject>Water consumption</subject><subject>Water demand</subject><subject>Water requirements</subject><subject>Water resources</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWH92PkDAraP5nZ9lqW0tCEJb6XLIzNzUlJlJTdJKdz5Cn9EncWpduHJ1udyPc849CN1Qck8Jyx4YYWQxJSyNpThBPZoJESVZwk9RjxDBI8qz5BxdeL8ihAoZJz20n7QBlk4F0y7x2KmtaSC4HX5UQeGFCW94_gauUTWetNqpr8_9FKrjdeRsg2cqQF2bAB4HiyfN2tkt4KHWpjTQljtsNX5Zw8HAtgcV58zyZ8H9amu87bxMi2d201n1vVFX6Eyr2sP177xEr6PhfPAUPb-MJ4P-c6R4nNJIFQCSF7oiBS1097zkktEUGFOpEDEtBct4UqaVjAFKllWaZjIuiII0IbTS_BLdHnW7xO8b8CFf2Y3rIvqcSZqKJGGx6Ki7I1U6670Dna-daZTb5ZTkh87zv513OD_iH6aG3b9svpgOpkwyQvk39GKFUg</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Bose, Indira</creator><creator>Hossain, Faisal</creator><creator>Eldardiry, Hisham</creator><creator>Ahmad, Shahryar</creator><creator>Biswas, Nishan K.</creator><creator>Bhatti, Ahmad Zeeshan</creator><creator>Lee, Hyongki</creator><creator>Aziz, Mazharul</creator><creator>Kamal Khan, Md. Shah</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9882-9535</orcidid><orcidid>https://orcid.org/0000-0002-9789-3137</orcidid><orcidid>https://orcid.org/0000-0001-5475-1772</orcidid><orcidid>https://orcid.org/0000-0001-6192-3157</orcidid><orcidid>https://orcid.org/0000-0002-2932-7459</orcidid><orcidid>https://orcid.org/0000-0002-3568-281X</orcidid><orcidid>https://orcid.org/0000-0001-6478-7533</orcidid><orcidid>https://orcid.org/0000-0002-5705-9869</orcidid></search><sort><creationdate>202104</creationdate><title>Integrating Gravimetry Data With Thermal Infra‐Red Data From Satellites to Improve Efficiency of Operational Irrigation Advisory in South Asia</title><author>Bose, Indira ; Hossain, Faisal ; Eldardiry, Hisham ; Ahmad, Shahryar ; Biswas, Nishan K. ; Bhatti, Ahmad Zeeshan ; Lee, Hyongki ; Aziz, Mazharul ; Kamal Khan, Md. Shah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3681-abee53bfd0b1bf029535218e22a84461c42937c8d56eec29df1956b0ae8701df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Crop water</topic><topic>Data</topic><topic>Dry season</topic><topic>Energy balance</topic><topic>Evapotranspiration</topic><topic>Farmers</topic><topic>GRACE (experiment)</topic><topic>Gravimetry</topic><topic>Gravity</topic><topic>gravity recovery and climate experiment (GRACE)</topic><topic>Groundwater</topic><topic>Groundwater resources</topic><topic>Imagery</topic><topic>Infrared imagery</topic><topic>Irrigation</topic><topic>Irrigation districts</topic><topic>Irrigation efficiency</topic><topic>Irrigation systems</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Optimization</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Surface energy</topic><topic>Surface energy balance</topic><topic>Surface properties</topic><topic>Sustainability</topic><topic>Target recognition</topic><topic>thermal infrared</topic><topic>Water consumption</topic><topic>Water demand</topic><topic>Water requirements</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bose, Indira</creatorcontrib><creatorcontrib>Hossain, Faisal</creatorcontrib><creatorcontrib>Eldardiry, Hisham</creatorcontrib><creatorcontrib>Ahmad, Shahryar</creatorcontrib><creatorcontrib>Biswas, Nishan K.</creatorcontrib><creatorcontrib>Bhatti, Ahmad Zeeshan</creatorcontrib><creatorcontrib>Lee, Hyongki</creatorcontrib><creatorcontrib>Aziz, Mazharul</creatorcontrib><creatorcontrib>Kamal Khan, Md. Shah</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bose, Indira</au><au>Hossain, Faisal</au><au>Eldardiry, Hisham</au><au>Ahmad, Shahryar</au><au>Biswas, Nishan K.</au><au>Bhatti, Ahmad Zeeshan</au><au>Lee, Hyongki</au><au>Aziz, Mazharul</au><au>Kamal Khan, Md. Shah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Gravimetry Data With Thermal Infra‐Red Data From Satellites to Improve Efficiency of Operational Irrigation Advisory in South Asia</atitle><jtitle>Water resources research</jtitle><date>2021-04</date><risdate>2021</risdate><volume>57</volume><issue>4</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>The rapid decline of groundwater resources in South Asia due to excessive irrigation during dry season requires awareness of optimal on‐field water requirements. Such information is currently provided on farmer cellphones through an operational Irrigation Advisory System (IAS). To minimize the cost of sending such irrigation advisory texts to farmers while maximizing impact of IAS on groundwater sustainability, we integrated Gravity Recovery and Climate Experiment (GRACE) data with Landsat Thermal Infrared (TIR) Imagery to target regions in greater need of the IAS service. We demonstrated the concept of an improved IAS over eight irrigation districts of the Ganges and Indus basins. The Surface Energy Balance Algorithm for Land (SEBAL) was used to monitor on‐field water consumption (evapotranspiration‐ET) over cropped areas using Landsat TIR data at plot‐scale spatial resolution. Comparison of SEBAL ET with crop water demand from Penman‐Monteith (FAO56) technique quantified the extent of overirrigation at the plot scale and provided a tangible pathway to microtarget the IAS service only to farmers with the largest groundwater use footprint, thereby improving the impact of the IAS service further. Our results suggested that an operational IAS that integrates GRACE and Landsat TIR data on average can save about 85% (80 million m3) of groundwater per dry season for irrigation districts of Northern India and 87% (or 150 million m3) per year for irrigation districts of Eastern Pakistan. Key Points An operational irrigation advisory was made more efficient with Gravity Recovery and Climate Experiment (GRACE) and Landsat Thermal data GRACE data identified rapidly depleting groundwater zones to allow strategic targeting of the irrigation advisory Landsat thermal data allowed plot scale strategic targeting of farmers with the highest groundwater waste to maximize water savings</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2020WR028654</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9882-9535</orcidid><orcidid>https://orcid.org/0000-0002-9789-3137</orcidid><orcidid>https://orcid.org/0000-0001-5475-1772</orcidid><orcidid>https://orcid.org/0000-0001-6192-3157</orcidid><orcidid>https://orcid.org/0000-0002-2932-7459</orcidid><orcidid>https://orcid.org/0000-0002-3568-281X</orcidid><orcidid>https://orcid.org/0000-0001-6478-7533</orcidid><orcidid>https://orcid.org/0000-0002-5705-9869</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2021-04, Vol.57 (4), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_2518477264
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals
subjects Algorithms
Crop water
Data
Dry season
Energy balance
Evapotranspiration
Farmers
GRACE (experiment)
Gravimetry
Gravity
gravity recovery and climate experiment (GRACE)
Groundwater
Groundwater resources
Imagery
Infrared imagery
Irrigation
Irrigation districts
Irrigation efficiency
Irrigation systems
Landsat
Landsat satellites
Optimization
Remote sensing
Satellite imagery
Spatial discrimination
Spatial resolution
Surface energy
Surface energy balance
Surface properties
Sustainability
Target recognition
thermal infrared
Water consumption
Water demand
Water requirements
Water resources
title Integrating Gravimetry Data With Thermal Infra‐Red Data From Satellites to Improve Efficiency of Operational Irrigation Advisory in South Asia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Gravimetry%20Data%20With%20Thermal%20Infra%E2%80%90Red%20Data%20From%20Satellites%20to%20Improve%20Efficiency%20of%20Operational%20Irrigation%20Advisory%20in%20South%20Asia&rft.jtitle=Water%20resources%20research&rft.au=Bose,%20Indira&rft.date=2021-04&rft.volume=57&rft.issue=4&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2020WR028654&rft_dat=%3Cproquest_cross%3E2518477264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518477264&rft_id=info:pmid/&rfr_iscdi=true