Integrating Gravimetry Data With Thermal Infra‐Red Data From Satellites to Improve Efficiency of Operational Irrigation Advisory in South Asia
The rapid decline of groundwater resources in South Asia due to excessive irrigation during dry season requires awareness of optimal on‐field water requirements. Such information is currently provided on farmer cellphones through an operational Irrigation Advisory System (IAS). To minimize the cost...
Gespeichert in:
Veröffentlicht in: | Water resources research 2021-04, Vol.57 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Water resources research |
container_volume | 57 |
creator | Bose, Indira Hossain, Faisal Eldardiry, Hisham Ahmad, Shahryar Biswas, Nishan K. Bhatti, Ahmad Zeeshan Lee, Hyongki Aziz, Mazharul Kamal Khan, Md. Shah |
description | The rapid decline of groundwater resources in South Asia due to excessive irrigation during dry season requires awareness of optimal on‐field water requirements. Such information is currently provided on farmer cellphones through an operational Irrigation Advisory System (IAS). To minimize the cost of sending such irrigation advisory texts to farmers while maximizing impact of IAS on groundwater sustainability, we integrated Gravity Recovery and Climate Experiment (GRACE) data with Landsat Thermal Infrared (TIR) Imagery to target regions in greater need of the IAS service. We demonstrated the concept of an improved IAS over eight irrigation districts of the Ganges and Indus basins. The Surface Energy Balance Algorithm for Land (SEBAL) was used to monitor on‐field water consumption (evapotranspiration‐ET) over cropped areas using Landsat TIR data at plot‐scale spatial resolution. Comparison of SEBAL ET with crop water demand from Penman‐Monteith (FAO56) technique quantified the extent of overirrigation at the plot scale and provided a tangible pathway to microtarget the IAS service only to farmers with the largest groundwater use footprint, thereby improving the impact of the IAS service further. Our results suggested that an operational IAS that integrates GRACE and Landsat TIR data on average can save about 85% (80 million m3) of groundwater per dry season for irrigation districts of Northern India and 87% (or 150 million m3) per year for irrigation districts of Eastern Pakistan.
Key Points
An operational irrigation advisory was made more efficient with Gravity Recovery and Climate Experiment (GRACE) and Landsat Thermal data
GRACE data identified rapidly depleting groundwater zones to allow strategic targeting of the irrigation advisory
Landsat thermal data allowed plot scale strategic targeting of farmers with the highest groundwater waste to maximize water savings |
doi_str_mv | 10.1029/2020WR028654 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518477264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518477264</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3681-abee53bfd0b1bf029535218e22a84461c42937c8d56eec29df1956b0ae8701df3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWH92PkDAraP5nZ9lqW0tCEJb6XLIzNzUlJlJTdJKdz5Cn9EncWpduHJ1udyPc849CN1Qck8Jyx4YYWQxJSyNpThBPZoJESVZwk9RjxDBI8qz5BxdeL8ihAoZJz20n7QBlk4F0y7x2KmtaSC4HX5UQeGFCW94_gauUTWetNqpr8_9FKrjdeRsg2cqQF2bAB4HiyfN2tkt4KHWpjTQljtsNX5Zw8HAtgcV58zyZ8H9amu87bxMi2d201n1vVFX6Eyr2sP177xEr6PhfPAUPb-MJ4P-c6R4nNJIFQCSF7oiBS1097zkktEUGFOpEDEtBct4UqaVjAFKllWaZjIuiII0IbTS_BLdHnW7xO8b8CFf2Y3rIvqcSZqKJGGx6Ki7I1U6670Dna-daZTb5ZTkh87zv513OD_iH6aG3b9svpgOpkwyQvk39GKFUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518477264</pqid></control><display><type>article</type><title>Integrating Gravimetry Data With Thermal Infra‐Red Data From Satellites to Improve Efficiency of Operational Irrigation Advisory in South Asia</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><creator>Bose, Indira ; Hossain, Faisal ; Eldardiry, Hisham ; Ahmad, Shahryar ; Biswas, Nishan K. ; Bhatti, Ahmad Zeeshan ; Lee, Hyongki ; Aziz, Mazharul ; Kamal Khan, Md. Shah</creator><creatorcontrib>Bose, Indira ; Hossain, Faisal ; Eldardiry, Hisham ; Ahmad, Shahryar ; Biswas, Nishan K. ; Bhatti, Ahmad Zeeshan ; Lee, Hyongki ; Aziz, Mazharul ; Kamal Khan, Md. Shah</creatorcontrib><description>The rapid decline of groundwater resources in South Asia due to excessive irrigation during dry season requires awareness of optimal on‐field water requirements. Such information is currently provided on farmer cellphones through an operational Irrigation Advisory System (IAS). To minimize the cost of sending such irrigation advisory texts to farmers while maximizing impact of IAS on groundwater sustainability, we integrated Gravity Recovery and Climate Experiment (GRACE) data with Landsat Thermal Infrared (TIR) Imagery to target regions in greater need of the IAS service. We demonstrated the concept of an improved IAS over eight irrigation districts of the Ganges and Indus basins. The Surface Energy Balance Algorithm for Land (SEBAL) was used to monitor on‐field water consumption (evapotranspiration‐ET) over cropped areas using Landsat TIR data at plot‐scale spatial resolution. Comparison of SEBAL ET with crop water demand from Penman‐Monteith (FAO56) technique quantified the extent of overirrigation at the plot scale and provided a tangible pathway to microtarget the IAS service only to farmers with the largest groundwater use footprint, thereby improving the impact of the IAS service further. Our results suggested that an operational IAS that integrates GRACE and Landsat TIR data on average can save about 85% (80 million m3) of groundwater per dry season for irrigation districts of Northern India and 87% (or 150 million m3) per year for irrigation districts of Eastern Pakistan.
Key Points
An operational irrigation advisory was made more efficient with Gravity Recovery and Climate Experiment (GRACE) and Landsat Thermal data
GRACE data identified rapidly depleting groundwater zones to allow strategic targeting of the irrigation advisory
Landsat thermal data allowed plot scale strategic targeting of farmers with the highest groundwater waste to maximize water savings</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2020WR028654</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Crop water ; Data ; Dry season ; Energy balance ; Evapotranspiration ; Farmers ; GRACE (experiment) ; Gravimetry ; Gravity ; gravity recovery and climate experiment (GRACE) ; Groundwater ; Groundwater resources ; Imagery ; Infrared imagery ; Irrigation ; Irrigation districts ; Irrigation efficiency ; Irrigation systems ; Landsat ; Landsat satellites ; Optimization ; Remote sensing ; Satellite imagery ; Spatial discrimination ; Spatial resolution ; Surface energy ; Surface energy balance ; Surface properties ; Sustainability ; Target recognition ; thermal infrared ; Water consumption ; Water demand ; Water requirements ; Water resources</subject><ispartof>Water resources research, 2021-04, Vol.57 (4), p.n/a</ispartof><rights>2021. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3681-abee53bfd0b1bf029535218e22a84461c42937c8d56eec29df1956b0ae8701df3</citedby><cites>FETCH-LOGICAL-a3681-abee53bfd0b1bf029535218e22a84461c42937c8d56eec29df1956b0ae8701df3</cites><orcidid>0000-0001-9882-9535 ; 0000-0002-9789-3137 ; 0000-0001-5475-1772 ; 0000-0001-6192-3157 ; 0000-0002-2932-7459 ; 0000-0002-3568-281X ; 0000-0001-6478-7533 ; 0000-0002-5705-9869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020WR028654$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020WR028654$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,11516,27926,27927,45576,45577,46470,46894</link.rule.ids></links><search><creatorcontrib>Bose, Indira</creatorcontrib><creatorcontrib>Hossain, Faisal</creatorcontrib><creatorcontrib>Eldardiry, Hisham</creatorcontrib><creatorcontrib>Ahmad, Shahryar</creatorcontrib><creatorcontrib>Biswas, Nishan K.</creatorcontrib><creatorcontrib>Bhatti, Ahmad Zeeshan</creatorcontrib><creatorcontrib>Lee, Hyongki</creatorcontrib><creatorcontrib>Aziz, Mazharul</creatorcontrib><creatorcontrib>Kamal Khan, Md. Shah</creatorcontrib><title>Integrating Gravimetry Data With Thermal Infra‐Red Data From Satellites to Improve Efficiency of Operational Irrigation Advisory in South Asia</title><title>Water resources research</title><description>The rapid decline of groundwater resources in South Asia due to excessive irrigation during dry season requires awareness of optimal on‐field water requirements. Such information is currently provided on farmer cellphones through an operational Irrigation Advisory System (IAS). To minimize the cost of sending such irrigation advisory texts to farmers while maximizing impact of IAS on groundwater sustainability, we integrated Gravity Recovery and Climate Experiment (GRACE) data with Landsat Thermal Infrared (TIR) Imagery to target regions in greater need of the IAS service. We demonstrated the concept of an improved IAS over eight irrigation districts of the Ganges and Indus basins. The Surface Energy Balance Algorithm for Land (SEBAL) was used to monitor on‐field water consumption (evapotranspiration‐ET) over cropped areas using Landsat TIR data at plot‐scale spatial resolution. Comparison of SEBAL ET with crop water demand from Penman‐Monteith (FAO56) technique quantified the extent of overirrigation at the plot scale and provided a tangible pathway to microtarget the IAS service only to farmers with the largest groundwater use footprint, thereby improving the impact of the IAS service further. Our results suggested that an operational IAS that integrates GRACE and Landsat TIR data on average can save about 85% (80 million m3) of groundwater per dry season for irrigation districts of Northern India and 87% (or 150 million m3) per year for irrigation districts of Eastern Pakistan.
Key Points
An operational irrigation advisory was made more efficient with Gravity Recovery and Climate Experiment (GRACE) and Landsat Thermal data
GRACE data identified rapidly depleting groundwater zones to allow strategic targeting of the irrigation advisory
Landsat thermal data allowed plot scale strategic targeting of farmers with the highest groundwater waste to maximize water savings</description><subject>Algorithms</subject><subject>Crop water</subject><subject>Data</subject><subject>Dry season</subject><subject>Energy balance</subject><subject>Evapotranspiration</subject><subject>Farmers</subject><subject>GRACE (experiment)</subject><subject>Gravimetry</subject><subject>Gravity</subject><subject>gravity recovery and climate experiment (GRACE)</subject><subject>Groundwater</subject><subject>Groundwater resources</subject><subject>Imagery</subject><subject>Infrared imagery</subject><subject>Irrigation</subject><subject>Irrigation districts</subject><subject>Irrigation efficiency</subject><subject>Irrigation systems</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Optimization</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Surface energy</subject><subject>Surface energy balance</subject><subject>Surface properties</subject><subject>Sustainability</subject><subject>Target recognition</subject><subject>thermal infrared</subject><subject>Water consumption</subject><subject>Water demand</subject><subject>Water requirements</subject><subject>Water resources</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWH92PkDAraP5nZ9lqW0tCEJb6XLIzNzUlJlJTdJKdz5Cn9EncWpduHJ1udyPc849CN1Qck8Jyx4YYWQxJSyNpThBPZoJESVZwk9RjxDBI8qz5BxdeL8ihAoZJz20n7QBlk4F0y7x2KmtaSC4HX5UQeGFCW94_gauUTWetNqpr8_9FKrjdeRsg2cqQF2bAB4HiyfN2tkt4KHWpjTQljtsNX5Zw8HAtgcV58zyZ8H9amu87bxMi2d201n1vVFX6Eyr2sP177xEr6PhfPAUPb-MJ4P-c6R4nNJIFQCSF7oiBS1097zkktEUGFOpEDEtBct4UqaVjAFKllWaZjIuiII0IbTS_BLdHnW7xO8b8CFf2Y3rIvqcSZqKJGGx6Ki7I1U6670Dna-daZTb5ZTkh87zv513OD_iH6aG3b9svpgOpkwyQvk39GKFUg</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Bose, Indira</creator><creator>Hossain, Faisal</creator><creator>Eldardiry, Hisham</creator><creator>Ahmad, Shahryar</creator><creator>Biswas, Nishan K.</creator><creator>Bhatti, Ahmad Zeeshan</creator><creator>Lee, Hyongki</creator><creator>Aziz, Mazharul</creator><creator>Kamal Khan, Md. Shah</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9882-9535</orcidid><orcidid>https://orcid.org/0000-0002-9789-3137</orcidid><orcidid>https://orcid.org/0000-0001-5475-1772</orcidid><orcidid>https://orcid.org/0000-0001-6192-3157</orcidid><orcidid>https://orcid.org/0000-0002-2932-7459</orcidid><orcidid>https://orcid.org/0000-0002-3568-281X</orcidid><orcidid>https://orcid.org/0000-0001-6478-7533</orcidid><orcidid>https://orcid.org/0000-0002-5705-9869</orcidid></search><sort><creationdate>202104</creationdate><title>Integrating Gravimetry Data With Thermal Infra‐Red Data From Satellites to Improve Efficiency of Operational Irrigation Advisory in South Asia</title><author>Bose, Indira ; Hossain, Faisal ; Eldardiry, Hisham ; Ahmad, Shahryar ; Biswas, Nishan K. ; Bhatti, Ahmad Zeeshan ; Lee, Hyongki ; Aziz, Mazharul ; Kamal Khan, Md. Shah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3681-abee53bfd0b1bf029535218e22a84461c42937c8d56eec29df1956b0ae8701df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Crop water</topic><topic>Data</topic><topic>Dry season</topic><topic>Energy balance</topic><topic>Evapotranspiration</topic><topic>Farmers</topic><topic>GRACE (experiment)</topic><topic>Gravimetry</topic><topic>Gravity</topic><topic>gravity recovery and climate experiment (GRACE)</topic><topic>Groundwater</topic><topic>Groundwater resources</topic><topic>Imagery</topic><topic>Infrared imagery</topic><topic>Irrigation</topic><topic>Irrigation districts</topic><topic>Irrigation efficiency</topic><topic>Irrigation systems</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Optimization</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Surface energy</topic><topic>Surface energy balance</topic><topic>Surface properties</topic><topic>Sustainability</topic><topic>Target recognition</topic><topic>thermal infrared</topic><topic>Water consumption</topic><topic>Water demand</topic><topic>Water requirements</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bose, Indira</creatorcontrib><creatorcontrib>Hossain, Faisal</creatorcontrib><creatorcontrib>Eldardiry, Hisham</creatorcontrib><creatorcontrib>Ahmad, Shahryar</creatorcontrib><creatorcontrib>Biswas, Nishan K.</creatorcontrib><creatorcontrib>Bhatti, Ahmad Zeeshan</creatorcontrib><creatorcontrib>Lee, Hyongki</creatorcontrib><creatorcontrib>Aziz, Mazharul</creatorcontrib><creatorcontrib>Kamal Khan, Md. Shah</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bose, Indira</au><au>Hossain, Faisal</au><au>Eldardiry, Hisham</au><au>Ahmad, Shahryar</au><au>Biswas, Nishan K.</au><au>Bhatti, Ahmad Zeeshan</au><au>Lee, Hyongki</au><au>Aziz, Mazharul</au><au>Kamal Khan, Md. Shah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Gravimetry Data With Thermal Infra‐Red Data From Satellites to Improve Efficiency of Operational Irrigation Advisory in South Asia</atitle><jtitle>Water resources research</jtitle><date>2021-04</date><risdate>2021</risdate><volume>57</volume><issue>4</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>The rapid decline of groundwater resources in South Asia due to excessive irrigation during dry season requires awareness of optimal on‐field water requirements. Such information is currently provided on farmer cellphones through an operational Irrigation Advisory System (IAS). To minimize the cost of sending such irrigation advisory texts to farmers while maximizing impact of IAS on groundwater sustainability, we integrated Gravity Recovery and Climate Experiment (GRACE) data with Landsat Thermal Infrared (TIR) Imagery to target regions in greater need of the IAS service. We demonstrated the concept of an improved IAS over eight irrigation districts of the Ganges and Indus basins. The Surface Energy Balance Algorithm for Land (SEBAL) was used to monitor on‐field water consumption (evapotranspiration‐ET) over cropped areas using Landsat TIR data at plot‐scale spatial resolution. Comparison of SEBAL ET with crop water demand from Penman‐Monteith (FAO56) technique quantified the extent of overirrigation at the plot scale and provided a tangible pathway to microtarget the IAS service only to farmers with the largest groundwater use footprint, thereby improving the impact of the IAS service further. Our results suggested that an operational IAS that integrates GRACE and Landsat TIR data on average can save about 85% (80 million m3) of groundwater per dry season for irrigation districts of Northern India and 87% (or 150 million m3) per year for irrigation districts of Eastern Pakistan.
Key Points
An operational irrigation advisory was made more efficient with Gravity Recovery and Climate Experiment (GRACE) and Landsat Thermal data
GRACE data identified rapidly depleting groundwater zones to allow strategic targeting of the irrigation advisory
Landsat thermal data allowed plot scale strategic targeting of farmers with the highest groundwater waste to maximize water savings</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2020WR028654</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9882-9535</orcidid><orcidid>https://orcid.org/0000-0002-9789-3137</orcidid><orcidid>https://orcid.org/0000-0001-5475-1772</orcidid><orcidid>https://orcid.org/0000-0001-6192-3157</orcidid><orcidid>https://orcid.org/0000-0002-2932-7459</orcidid><orcidid>https://orcid.org/0000-0002-3568-281X</orcidid><orcidid>https://orcid.org/0000-0001-6478-7533</orcidid><orcidid>https://orcid.org/0000-0002-5705-9869</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2021-04, Vol.57 (4), p.n/a |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_journals_2518477264 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals |
subjects | Algorithms Crop water Data Dry season Energy balance Evapotranspiration Farmers GRACE (experiment) Gravimetry Gravity gravity recovery and climate experiment (GRACE) Groundwater Groundwater resources Imagery Infrared imagery Irrigation Irrigation districts Irrigation efficiency Irrigation systems Landsat Landsat satellites Optimization Remote sensing Satellite imagery Spatial discrimination Spatial resolution Surface energy Surface energy balance Surface properties Sustainability Target recognition thermal infrared Water consumption Water demand Water requirements Water resources |
title | Integrating Gravimetry Data With Thermal Infra‐Red Data From Satellites to Improve Efficiency of Operational Irrigation Advisory in South Asia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Gravimetry%20Data%20With%20Thermal%20Infra%E2%80%90Red%20Data%20From%20Satellites%20to%20Improve%20Efficiency%20of%20Operational%20Irrigation%20Advisory%20in%20South%20Asia&rft.jtitle=Water%20resources%20research&rft.au=Bose,%20Indira&rft.date=2021-04&rft.volume=57&rft.issue=4&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2020WR028654&rft_dat=%3Cproquest_cross%3E2518477264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518477264&rft_id=info:pmid/&rfr_iscdi=true |