Spectral Analysis of Vertical Temperature Profile Time‐Series Data in Yellowstone Lake Sediments

We use yearlong vertical temperature profile time‐series (seven thermistors at evenly spaced depth intervals from 10 to 70 cm) from five sites in and around the Deep Hole thermal area, southeast of Stevenson Island, Yellowstone Lake, to investigate heat and mass fluxes across the lake floor. The rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2021-04, Vol.57 (4), p.n/a
Hauptverfasser: Sohn, Robert A., Harris, Robert N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Water resources research
container_volume 57
creator Sohn, Robert A.
Harris, Robert N.
description We use yearlong vertical temperature profile time‐series (seven thermistors at evenly spaced depth intervals from 10 to 70 cm) from five sites in and around the Deep Hole thermal area, southeast of Stevenson Island, Yellowstone Lake, to investigate heat and mass fluxes across the lake floor. The records demonstrate that thermal gradients in surficial sediments are modulated by a rich spectrum of bottom water temperature variations generated by hydrodynamic processes, and that sites inside the thermal area also respond to hydrothermal variations. We develop and implement a new method for estimating the sediment effective thermal diffusivity and pore fluid vertical flow rate that exploits the full spectrum of observed temperature variations to generate the parameter estimates, uncertainties, and metrics to assess statistical significance. Sediments at sites outside thermal areas have gradients of ∼7.5°C/m, in situ thermal diffusivities of ∼1.6 × 10−7 m2/s consistent with highly porous (80–90%) siliceous sediments, and experience hypolentic flow in the upper ∼20 cm. Sites inside the Deep Hole thermal area exhibit considerable spatial and temporal variability, with gradients of 1–32°C/m, and higher thermal diffusivities of ∼2–12 × 10−7 m2/s, consistent with hydrothermal alteration of biogenic silica to clays, quartz, and pyrite. Upward pore fluid flow at these sites is observed across multiple depth intervals, with maximum values of ∼3 cm/day. The observed spatial and temporal variability within the thermal area is consistent with upward finger flow combined with short wavelength convection within the porous sediments above a steam reservoir. Key Points Yellowstone Lake sediments respond to hydrodynamically induced bottom water temperature variations and, in thermal areas, hydrothermal processes Hydrodynamic processes drive hypolentic flow in the upper ∼20 cm of the lakefloor sediments at deep (>80 m) water depths Hydrothermal processes generate fingered discharge and short wavelength convection in the Deep Hole thermal area sediments
doi_str_mv 10.1029/2020WR028430
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518476467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518476467</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3689-b3263613eb95d01ec63f9dac924ba833d25b344696a9c275c70b2a8ba81f1f173</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFZ3PsCAW6MzcyczmWWpv1BQ2mpxFSbJDaSmSZxJKd35CD6jT-KUunAld3Hh3o9zOIeQc86uOBPmWjDBFlMmEgnsgAy4kTLSRsMhGTAmIeJg9DE58X7JGJex0gOSzTrMe2drOmpsvfWVp21JX9H1VR6Oc1x16Gy_dkifXVtWNdJ5tcLvz68Zugo9vbG9pVVD37Cu243v2wbpxL4jnWERwKb3p-SotLXHs989JC93t_PxQzR5un8cjyaRBZWYKAOhQHHAzMQF45grKE1hcyNkZhOAQsQZSKmMsiYXOs41y4RNwo-XYTQMycVet3Ptxxp9ny7btQupfCpinkitpNpRl3sqd633Dsu0c9XKum3KWbprMf3bYsBhj29C9O2_bLqYjqfByRj4AZ_sdFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518476467</pqid></control><display><type>article</type><title>Spectral Analysis of Vertical Temperature Profile Time‐Series Data in Yellowstone Lake Sediments</title><source>Wiley Journals</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sohn, Robert A. ; Harris, Robert N.</creator><creatorcontrib>Sohn, Robert A. ; Harris, Robert N.</creatorcontrib><description>We use yearlong vertical temperature profile time‐series (seven thermistors at evenly spaced depth intervals from 10 to 70 cm) from five sites in and around the Deep Hole thermal area, southeast of Stevenson Island, Yellowstone Lake, to investigate heat and mass fluxes across the lake floor. The records demonstrate that thermal gradients in surficial sediments are modulated by a rich spectrum of bottom water temperature variations generated by hydrodynamic processes, and that sites inside the thermal area also respond to hydrothermal variations. We develop and implement a new method for estimating the sediment effective thermal diffusivity and pore fluid vertical flow rate that exploits the full spectrum of observed temperature variations to generate the parameter estimates, uncertainties, and metrics to assess statistical significance. Sediments at sites outside thermal areas have gradients of ∼7.5°C/m, in situ thermal diffusivities of ∼1.6 × 10−7 m2/s consistent with highly porous (80–90%) siliceous sediments, and experience hypolentic flow in the upper ∼20 cm. Sites inside the Deep Hole thermal area exhibit considerable spatial and temporal variability, with gradients of 1–32°C/m, and higher thermal diffusivities of ∼2–12 × 10−7 m2/s, consistent with hydrothermal alteration of biogenic silica to clays, quartz, and pyrite. Upward pore fluid flow at these sites is observed across multiple depth intervals, with maximum values of ∼3 cm/day. The observed spatial and temporal variability within the thermal area is consistent with upward finger flow combined with short wavelength convection within the porous sediments above a steam reservoir. Key Points Yellowstone Lake sediments respond to hydrodynamically induced bottom water temperature variations and, in thermal areas, hydrothermal processes Hydrodynamic processes drive hypolentic flow in the upper ∼20 cm of the lakefloor sediments at deep (&gt;80 m) water depths Hydrothermal processes generate fingered discharge and short wavelength convection in the Deep Hole thermal area sediments</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2020WR028430</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Bottom water ; Clay ; Convection ; Flow rates ; Flow velocity ; Fluid dynamics ; Fluid flow ; Fluxes ; Gradients ; groundwater ; Hydrodynamics ; hydrothermal ; Hydrothermal alteration ; hypolentic flow ; Intervals ; Lake deposits ; Lake sediments ; Lakes ; Parameter estimation ; Parameter uncertainty ; Pyrite ; Sediments ; Silica ; Siliceous sediments ; Silicon dioxide ; Spectral analysis ; Spectrum analysis ; Temperature gradients ; Temperature profile ; Temperature profiles ; Temperature variations ; Temporal variability ; Temporal variations ; Thermal diffusivity ; thermal gradients ; Thermistors ; Variation ; Vertical flow ; Vertical mixing ; vertical temperature profile ; Water temperature ; Wavelength</subject><ispartof>Water resources research, 2021-04, Vol.57 (4), p.n/a</ispartof><rights>2021. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3689-b3263613eb95d01ec63f9dac924ba833d25b344696a9c275c70b2a8ba81f1f173</citedby><cites>FETCH-LOGICAL-a3689-b3263613eb95d01ec63f9dac924ba833d25b344696a9c275c70b2a8ba81f1f173</cites><orcidid>0000-0002-9050-8603 ; 0000-0002-4641-1425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020WR028430$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020WR028430$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids></links><search><creatorcontrib>Sohn, Robert A.</creatorcontrib><creatorcontrib>Harris, Robert N.</creatorcontrib><title>Spectral Analysis of Vertical Temperature Profile Time‐Series Data in Yellowstone Lake Sediments</title><title>Water resources research</title><description>We use yearlong vertical temperature profile time‐series (seven thermistors at evenly spaced depth intervals from 10 to 70 cm) from five sites in and around the Deep Hole thermal area, southeast of Stevenson Island, Yellowstone Lake, to investigate heat and mass fluxes across the lake floor. The records demonstrate that thermal gradients in surficial sediments are modulated by a rich spectrum of bottom water temperature variations generated by hydrodynamic processes, and that sites inside the thermal area also respond to hydrothermal variations. We develop and implement a new method for estimating the sediment effective thermal diffusivity and pore fluid vertical flow rate that exploits the full spectrum of observed temperature variations to generate the parameter estimates, uncertainties, and metrics to assess statistical significance. Sediments at sites outside thermal areas have gradients of ∼7.5°C/m, in situ thermal diffusivities of ∼1.6 × 10−7 m2/s consistent with highly porous (80–90%) siliceous sediments, and experience hypolentic flow in the upper ∼20 cm. Sites inside the Deep Hole thermal area exhibit considerable spatial and temporal variability, with gradients of 1–32°C/m, and higher thermal diffusivities of ∼2–12 × 10−7 m2/s, consistent with hydrothermal alteration of biogenic silica to clays, quartz, and pyrite. Upward pore fluid flow at these sites is observed across multiple depth intervals, with maximum values of ∼3 cm/day. The observed spatial and temporal variability within the thermal area is consistent with upward finger flow combined with short wavelength convection within the porous sediments above a steam reservoir. Key Points Yellowstone Lake sediments respond to hydrodynamically induced bottom water temperature variations and, in thermal areas, hydrothermal processes Hydrodynamic processes drive hypolentic flow in the upper ∼20 cm of the lakefloor sediments at deep (&gt;80 m) water depths Hydrothermal processes generate fingered discharge and short wavelength convection in the Deep Hole thermal area sediments</description><subject>Bottom water</subject><subject>Clay</subject><subject>Convection</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluxes</subject><subject>Gradients</subject><subject>groundwater</subject><subject>Hydrodynamics</subject><subject>hydrothermal</subject><subject>Hydrothermal alteration</subject><subject>hypolentic flow</subject><subject>Intervals</subject><subject>Lake deposits</subject><subject>Lake sediments</subject><subject>Lakes</subject><subject>Parameter estimation</subject><subject>Parameter uncertainty</subject><subject>Pyrite</subject><subject>Sediments</subject><subject>Silica</subject><subject>Siliceous sediments</subject><subject>Silicon dioxide</subject><subject>Spectral analysis</subject><subject>Spectrum analysis</subject><subject>Temperature gradients</subject><subject>Temperature profile</subject><subject>Temperature profiles</subject><subject>Temperature variations</subject><subject>Temporal variability</subject><subject>Temporal variations</subject><subject>Thermal diffusivity</subject><subject>thermal gradients</subject><subject>Thermistors</subject><subject>Variation</subject><subject>Vertical flow</subject><subject>Vertical mixing</subject><subject>vertical temperature profile</subject><subject>Water temperature</subject><subject>Wavelength</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFZ3PsCAW6MzcyczmWWpv1BQ2mpxFSbJDaSmSZxJKd35CD6jT-KUunAld3Hh3o9zOIeQc86uOBPmWjDBFlMmEgnsgAy4kTLSRsMhGTAmIeJg9DE58X7JGJex0gOSzTrMe2drOmpsvfWVp21JX9H1VR6Oc1x16Gy_dkifXVtWNdJ5tcLvz68Zugo9vbG9pVVD37Cu243v2wbpxL4jnWERwKb3p-SotLXHs989JC93t_PxQzR5un8cjyaRBZWYKAOhQHHAzMQF45grKE1hcyNkZhOAQsQZSKmMsiYXOs41y4RNwo-XYTQMycVet3Ptxxp9ny7btQupfCpinkitpNpRl3sqd633Dsu0c9XKum3KWbprMf3bYsBhj29C9O2_bLqYjqfByRj4AZ_sdFQ</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Sohn, Robert A.</creator><creator>Harris, Robert N.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-9050-8603</orcidid><orcidid>https://orcid.org/0000-0002-4641-1425</orcidid></search><sort><creationdate>202104</creationdate><title>Spectral Analysis of Vertical Temperature Profile Time‐Series Data in Yellowstone Lake Sediments</title><author>Sohn, Robert A. ; Harris, Robert N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3689-b3263613eb95d01ec63f9dac924ba833d25b344696a9c275c70b2a8ba81f1f173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bottom water</topic><topic>Clay</topic><topic>Convection</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluxes</topic><topic>Gradients</topic><topic>groundwater</topic><topic>Hydrodynamics</topic><topic>hydrothermal</topic><topic>Hydrothermal alteration</topic><topic>hypolentic flow</topic><topic>Intervals</topic><topic>Lake deposits</topic><topic>Lake sediments</topic><topic>Lakes</topic><topic>Parameter estimation</topic><topic>Parameter uncertainty</topic><topic>Pyrite</topic><topic>Sediments</topic><topic>Silica</topic><topic>Siliceous sediments</topic><topic>Silicon dioxide</topic><topic>Spectral analysis</topic><topic>Spectrum analysis</topic><topic>Temperature gradients</topic><topic>Temperature profile</topic><topic>Temperature profiles</topic><topic>Temperature variations</topic><topic>Temporal variability</topic><topic>Temporal variations</topic><topic>Thermal diffusivity</topic><topic>thermal gradients</topic><topic>Thermistors</topic><topic>Variation</topic><topic>Vertical flow</topic><topic>Vertical mixing</topic><topic>vertical temperature profile</topic><topic>Water temperature</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohn, Robert A.</creatorcontrib><creatorcontrib>Harris, Robert N.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohn, Robert A.</au><au>Harris, Robert N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Analysis of Vertical Temperature Profile Time‐Series Data in Yellowstone Lake Sediments</atitle><jtitle>Water resources research</jtitle><date>2021-04</date><risdate>2021</risdate><volume>57</volume><issue>4</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>We use yearlong vertical temperature profile time‐series (seven thermistors at evenly spaced depth intervals from 10 to 70 cm) from five sites in and around the Deep Hole thermal area, southeast of Stevenson Island, Yellowstone Lake, to investigate heat and mass fluxes across the lake floor. The records demonstrate that thermal gradients in surficial sediments are modulated by a rich spectrum of bottom water temperature variations generated by hydrodynamic processes, and that sites inside the thermal area also respond to hydrothermal variations. We develop and implement a new method for estimating the sediment effective thermal diffusivity and pore fluid vertical flow rate that exploits the full spectrum of observed temperature variations to generate the parameter estimates, uncertainties, and metrics to assess statistical significance. Sediments at sites outside thermal areas have gradients of ∼7.5°C/m, in situ thermal diffusivities of ∼1.6 × 10−7 m2/s consistent with highly porous (80–90%) siliceous sediments, and experience hypolentic flow in the upper ∼20 cm. Sites inside the Deep Hole thermal area exhibit considerable spatial and temporal variability, with gradients of 1–32°C/m, and higher thermal diffusivities of ∼2–12 × 10−7 m2/s, consistent with hydrothermal alteration of biogenic silica to clays, quartz, and pyrite. Upward pore fluid flow at these sites is observed across multiple depth intervals, with maximum values of ∼3 cm/day. The observed spatial and temporal variability within the thermal area is consistent with upward finger flow combined with short wavelength convection within the porous sediments above a steam reservoir. Key Points Yellowstone Lake sediments respond to hydrodynamically induced bottom water temperature variations and, in thermal areas, hydrothermal processes Hydrodynamic processes drive hypolentic flow in the upper ∼20 cm of the lakefloor sediments at deep (&gt;80 m) water depths Hydrothermal processes generate fingered discharge and short wavelength convection in the Deep Hole thermal area sediments</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2020WR028430</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-9050-8603</orcidid><orcidid>https://orcid.org/0000-0002-4641-1425</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2021-04, Vol.57 (4), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_2518476467
source Wiley Journals; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects Bottom water
Clay
Convection
Flow rates
Flow velocity
Fluid dynamics
Fluid flow
Fluxes
Gradients
groundwater
Hydrodynamics
hydrothermal
Hydrothermal alteration
hypolentic flow
Intervals
Lake deposits
Lake sediments
Lakes
Parameter estimation
Parameter uncertainty
Pyrite
Sediments
Silica
Siliceous sediments
Silicon dioxide
Spectral analysis
Spectrum analysis
Temperature gradients
Temperature profile
Temperature profiles
Temperature variations
Temporal variability
Temporal variations
Thermal diffusivity
thermal gradients
Thermistors
Variation
Vertical flow
Vertical mixing
vertical temperature profile
Water temperature
Wavelength
title Spectral Analysis of Vertical Temperature Profile Time‐Series Data in Yellowstone Lake Sediments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Analysis%20of%20Vertical%20Temperature%20Profile%20Time%E2%80%90Series%20Data%20in%20Yellowstone%20Lake%20Sediments&rft.jtitle=Water%20resources%20research&rft.au=Sohn,%20Robert%20A.&rft.date=2021-04&rft.volume=57&rft.issue=4&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2020WR028430&rft_dat=%3Cproquest_cross%3E2518476467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518476467&rft_id=info:pmid/&rfr_iscdi=true