Spectral Analysis of Vertical Temperature Profile Time‐Series Data in Yellowstone Lake Sediments
We use yearlong vertical temperature profile time‐series (seven thermistors at evenly spaced depth intervals from 10 to 70 cm) from five sites in and around the Deep Hole thermal area, southeast of Stevenson Island, Yellowstone Lake, to investigate heat and mass fluxes across the lake floor. The rec...
Gespeichert in:
Veröffentlicht in: | Water resources research 2021-04, Vol.57 (4), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Water resources research |
container_volume | 57 |
creator | Sohn, Robert A. Harris, Robert N. |
description | We use yearlong vertical temperature profile time‐series (seven thermistors at evenly spaced depth intervals from 10 to 70 cm) from five sites in and around the Deep Hole thermal area, southeast of Stevenson Island, Yellowstone Lake, to investigate heat and mass fluxes across the lake floor. The records demonstrate that thermal gradients in surficial sediments are modulated by a rich spectrum of bottom water temperature variations generated by hydrodynamic processes, and that sites inside the thermal area also respond to hydrothermal variations. We develop and implement a new method for estimating the sediment effective thermal diffusivity and pore fluid vertical flow rate that exploits the full spectrum of observed temperature variations to generate the parameter estimates, uncertainties, and metrics to assess statistical significance. Sediments at sites outside thermal areas have gradients of ∼7.5°C/m, in situ thermal diffusivities of ∼1.6 × 10−7 m2/s consistent with highly porous (80–90%) siliceous sediments, and experience hypolentic flow in the upper ∼20 cm. Sites inside the Deep Hole thermal area exhibit considerable spatial and temporal variability, with gradients of 1–32°C/m, and higher thermal diffusivities of ∼2–12 × 10−7 m2/s, consistent with hydrothermal alteration of biogenic silica to clays, quartz, and pyrite. Upward pore fluid flow at these sites is observed across multiple depth intervals, with maximum values of ∼3 cm/day. The observed spatial and temporal variability within the thermal area is consistent with upward finger flow combined with short wavelength convection within the porous sediments above a steam reservoir.
Key Points
Yellowstone Lake sediments respond to hydrodynamically induced bottom water temperature variations and, in thermal areas, hydrothermal processes
Hydrodynamic processes drive hypolentic flow in the upper ∼20 cm of the lakefloor sediments at deep (>80 m) water depths
Hydrothermal processes generate fingered discharge and short wavelength convection in the Deep Hole thermal area sediments |
doi_str_mv | 10.1029/2020WR028430 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518476467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518476467</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3689-b3263613eb95d01ec63f9dac924ba833d25b344696a9c275c70b2a8ba81f1f173</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFZ3PsCAW6MzcyczmWWpv1BQ2mpxFSbJDaSmSZxJKd35CD6jT-KUunAld3Hh3o9zOIeQc86uOBPmWjDBFlMmEgnsgAy4kTLSRsMhGTAmIeJg9DE58X7JGJex0gOSzTrMe2drOmpsvfWVp21JX9H1VR6Oc1x16Gy_dkifXVtWNdJ5tcLvz68Zugo9vbG9pVVD37Cu243v2wbpxL4jnWERwKb3p-SotLXHs989JC93t_PxQzR5un8cjyaRBZWYKAOhQHHAzMQF45grKE1hcyNkZhOAQsQZSKmMsiYXOs41y4RNwo-XYTQMycVet3Ptxxp9ny7btQupfCpinkitpNpRl3sqd633Dsu0c9XKum3KWbprMf3bYsBhj29C9O2_bLqYjqfByRj4AZ_sdFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518476467</pqid></control><display><type>article</type><title>Spectral Analysis of Vertical Temperature Profile Time‐Series Data in Yellowstone Lake Sediments</title><source>Wiley Journals</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sohn, Robert A. ; Harris, Robert N.</creator><creatorcontrib>Sohn, Robert A. ; Harris, Robert N.</creatorcontrib><description>We use yearlong vertical temperature profile time‐series (seven thermistors at evenly spaced depth intervals from 10 to 70 cm) from five sites in and around the Deep Hole thermal area, southeast of Stevenson Island, Yellowstone Lake, to investigate heat and mass fluxes across the lake floor. The records demonstrate that thermal gradients in surficial sediments are modulated by a rich spectrum of bottom water temperature variations generated by hydrodynamic processes, and that sites inside the thermal area also respond to hydrothermal variations. We develop and implement a new method for estimating the sediment effective thermal diffusivity and pore fluid vertical flow rate that exploits the full spectrum of observed temperature variations to generate the parameter estimates, uncertainties, and metrics to assess statistical significance. Sediments at sites outside thermal areas have gradients of ∼7.5°C/m, in situ thermal diffusivities of ∼1.6 × 10−7 m2/s consistent with highly porous (80–90%) siliceous sediments, and experience hypolentic flow in the upper ∼20 cm. Sites inside the Deep Hole thermal area exhibit considerable spatial and temporal variability, with gradients of 1–32°C/m, and higher thermal diffusivities of ∼2–12 × 10−7 m2/s, consistent with hydrothermal alteration of biogenic silica to clays, quartz, and pyrite. Upward pore fluid flow at these sites is observed across multiple depth intervals, with maximum values of ∼3 cm/day. The observed spatial and temporal variability within the thermal area is consistent with upward finger flow combined with short wavelength convection within the porous sediments above a steam reservoir.
Key Points
Yellowstone Lake sediments respond to hydrodynamically induced bottom water temperature variations and, in thermal areas, hydrothermal processes
Hydrodynamic processes drive hypolentic flow in the upper ∼20 cm of the lakefloor sediments at deep (>80 m) water depths
Hydrothermal processes generate fingered discharge and short wavelength convection in the Deep Hole thermal area sediments</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2020WR028430</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Bottom water ; Clay ; Convection ; Flow rates ; Flow velocity ; Fluid dynamics ; Fluid flow ; Fluxes ; Gradients ; groundwater ; Hydrodynamics ; hydrothermal ; Hydrothermal alteration ; hypolentic flow ; Intervals ; Lake deposits ; Lake sediments ; Lakes ; Parameter estimation ; Parameter uncertainty ; Pyrite ; Sediments ; Silica ; Siliceous sediments ; Silicon dioxide ; Spectral analysis ; Spectrum analysis ; Temperature gradients ; Temperature profile ; Temperature profiles ; Temperature variations ; Temporal variability ; Temporal variations ; Thermal diffusivity ; thermal gradients ; Thermistors ; Variation ; Vertical flow ; Vertical mixing ; vertical temperature profile ; Water temperature ; Wavelength</subject><ispartof>Water resources research, 2021-04, Vol.57 (4), p.n/a</ispartof><rights>2021. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3689-b3263613eb95d01ec63f9dac924ba833d25b344696a9c275c70b2a8ba81f1f173</citedby><cites>FETCH-LOGICAL-a3689-b3263613eb95d01ec63f9dac924ba833d25b344696a9c275c70b2a8ba81f1f173</cites><orcidid>0000-0002-9050-8603 ; 0000-0002-4641-1425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020WR028430$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020WR028430$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids></links><search><creatorcontrib>Sohn, Robert A.</creatorcontrib><creatorcontrib>Harris, Robert N.</creatorcontrib><title>Spectral Analysis of Vertical Temperature Profile Time‐Series Data in Yellowstone Lake Sediments</title><title>Water resources research</title><description>We use yearlong vertical temperature profile time‐series (seven thermistors at evenly spaced depth intervals from 10 to 70 cm) from five sites in and around the Deep Hole thermal area, southeast of Stevenson Island, Yellowstone Lake, to investigate heat and mass fluxes across the lake floor. The records demonstrate that thermal gradients in surficial sediments are modulated by a rich spectrum of bottom water temperature variations generated by hydrodynamic processes, and that sites inside the thermal area also respond to hydrothermal variations. We develop and implement a new method for estimating the sediment effective thermal diffusivity and pore fluid vertical flow rate that exploits the full spectrum of observed temperature variations to generate the parameter estimates, uncertainties, and metrics to assess statistical significance. Sediments at sites outside thermal areas have gradients of ∼7.5°C/m, in situ thermal diffusivities of ∼1.6 × 10−7 m2/s consistent with highly porous (80–90%) siliceous sediments, and experience hypolentic flow in the upper ∼20 cm. Sites inside the Deep Hole thermal area exhibit considerable spatial and temporal variability, with gradients of 1–32°C/m, and higher thermal diffusivities of ∼2–12 × 10−7 m2/s, consistent with hydrothermal alteration of biogenic silica to clays, quartz, and pyrite. Upward pore fluid flow at these sites is observed across multiple depth intervals, with maximum values of ∼3 cm/day. The observed spatial and temporal variability within the thermal area is consistent with upward finger flow combined with short wavelength convection within the porous sediments above a steam reservoir.
Key Points
Yellowstone Lake sediments respond to hydrodynamically induced bottom water temperature variations and, in thermal areas, hydrothermal processes
Hydrodynamic processes drive hypolentic flow in the upper ∼20 cm of the lakefloor sediments at deep (>80 m) water depths
Hydrothermal processes generate fingered discharge and short wavelength convection in the Deep Hole thermal area sediments</description><subject>Bottom water</subject><subject>Clay</subject><subject>Convection</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluxes</subject><subject>Gradients</subject><subject>groundwater</subject><subject>Hydrodynamics</subject><subject>hydrothermal</subject><subject>Hydrothermal alteration</subject><subject>hypolentic flow</subject><subject>Intervals</subject><subject>Lake deposits</subject><subject>Lake sediments</subject><subject>Lakes</subject><subject>Parameter estimation</subject><subject>Parameter uncertainty</subject><subject>Pyrite</subject><subject>Sediments</subject><subject>Silica</subject><subject>Siliceous sediments</subject><subject>Silicon dioxide</subject><subject>Spectral analysis</subject><subject>Spectrum analysis</subject><subject>Temperature gradients</subject><subject>Temperature profile</subject><subject>Temperature profiles</subject><subject>Temperature variations</subject><subject>Temporal variability</subject><subject>Temporal variations</subject><subject>Thermal diffusivity</subject><subject>thermal gradients</subject><subject>Thermistors</subject><subject>Variation</subject><subject>Vertical flow</subject><subject>Vertical mixing</subject><subject>vertical temperature profile</subject><subject>Water temperature</subject><subject>Wavelength</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFZ3PsCAW6MzcyczmWWpv1BQ2mpxFSbJDaSmSZxJKd35CD6jT-KUunAld3Hh3o9zOIeQc86uOBPmWjDBFlMmEgnsgAy4kTLSRsMhGTAmIeJg9DE58X7JGJex0gOSzTrMe2drOmpsvfWVp21JX9H1VR6Oc1x16Gy_dkifXVtWNdJ5tcLvz68Zugo9vbG9pVVD37Cu243v2wbpxL4jnWERwKb3p-SotLXHs989JC93t_PxQzR5un8cjyaRBZWYKAOhQHHAzMQF45grKE1hcyNkZhOAQsQZSKmMsiYXOs41y4RNwo-XYTQMycVet3Ptxxp9ny7btQupfCpinkitpNpRl3sqd633Dsu0c9XKum3KWbprMf3bYsBhj29C9O2_bLqYjqfByRj4AZ_sdFQ</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Sohn, Robert A.</creator><creator>Harris, Robert N.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-9050-8603</orcidid><orcidid>https://orcid.org/0000-0002-4641-1425</orcidid></search><sort><creationdate>202104</creationdate><title>Spectral Analysis of Vertical Temperature Profile Time‐Series Data in Yellowstone Lake Sediments</title><author>Sohn, Robert A. ; Harris, Robert N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3689-b3263613eb95d01ec63f9dac924ba833d25b344696a9c275c70b2a8ba81f1f173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bottom water</topic><topic>Clay</topic><topic>Convection</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluxes</topic><topic>Gradients</topic><topic>groundwater</topic><topic>Hydrodynamics</topic><topic>hydrothermal</topic><topic>Hydrothermal alteration</topic><topic>hypolentic flow</topic><topic>Intervals</topic><topic>Lake deposits</topic><topic>Lake sediments</topic><topic>Lakes</topic><topic>Parameter estimation</topic><topic>Parameter uncertainty</topic><topic>Pyrite</topic><topic>Sediments</topic><topic>Silica</topic><topic>Siliceous sediments</topic><topic>Silicon dioxide</topic><topic>Spectral analysis</topic><topic>Spectrum analysis</topic><topic>Temperature gradients</topic><topic>Temperature profile</topic><topic>Temperature profiles</topic><topic>Temperature variations</topic><topic>Temporal variability</topic><topic>Temporal variations</topic><topic>Thermal diffusivity</topic><topic>thermal gradients</topic><topic>Thermistors</topic><topic>Variation</topic><topic>Vertical flow</topic><topic>Vertical mixing</topic><topic>vertical temperature profile</topic><topic>Water temperature</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohn, Robert A.</creatorcontrib><creatorcontrib>Harris, Robert N.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohn, Robert A.</au><au>Harris, Robert N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Analysis of Vertical Temperature Profile Time‐Series Data in Yellowstone Lake Sediments</atitle><jtitle>Water resources research</jtitle><date>2021-04</date><risdate>2021</risdate><volume>57</volume><issue>4</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>We use yearlong vertical temperature profile time‐series (seven thermistors at evenly spaced depth intervals from 10 to 70 cm) from five sites in and around the Deep Hole thermal area, southeast of Stevenson Island, Yellowstone Lake, to investigate heat and mass fluxes across the lake floor. The records demonstrate that thermal gradients in surficial sediments are modulated by a rich spectrum of bottom water temperature variations generated by hydrodynamic processes, and that sites inside the thermal area also respond to hydrothermal variations. We develop and implement a new method for estimating the sediment effective thermal diffusivity and pore fluid vertical flow rate that exploits the full spectrum of observed temperature variations to generate the parameter estimates, uncertainties, and metrics to assess statistical significance. Sediments at sites outside thermal areas have gradients of ∼7.5°C/m, in situ thermal diffusivities of ∼1.6 × 10−7 m2/s consistent with highly porous (80–90%) siliceous sediments, and experience hypolentic flow in the upper ∼20 cm. Sites inside the Deep Hole thermal area exhibit considerable spatial and temporal variability, with gradients of 1–32°C/m, and higher thermal diffusivities of ∼2–12 × 10−7 m2/s, consistent with hydrothermal alteration of biogenic silica to clays, quartz, and pyrite. Upward pore fluid flow at these sites is observed across multiple depth intervals, with maximum values of ∼3 cm/day. The observed spatial and temporal variability within the thermal area is consistent with upward finger flow combined with short wavelength convection within the porous sediments above a steam reservoir.
Key Points
Yellowstone Lake sediments respond to hydrodynamically induced bottom water temperature variations and, in thermal areas, hydrothermal processes
Hydrodynamic processes drive hypolentic flow in the upper ∼20 cm of the lakefloor sediments at deep (>80 m) water depths
Hydrothermal processes generate fingered discharge and short wavelength convection in the Deep Hole thermal area sediments</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2020WR028430</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-9050-8603</orcidid><orcidid>https://orcid.org/0000-0002-4641-1425</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2021-04, Vol.57 (4), p.n/a |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_journals_2518476467 |
source | Wiley Journals; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals |
subjects | Bottom water Clay Convection Flow rates Flow velocity Fluid dynamics Fluid flow Fluxes Gradients groundwater Hydrodynamics hydrothermal Hydrothermal alteration hypolentic flow Intervals Lake deposits Lake sediments Lakes Parameter estimation Parameter uncertainty Pyrite Sediments Silica Siliceous sediments Silicon dioxide Spectral analysis Spectrum analysis Temperature gradients Temperature profile Temperature profiles Temperature variations Temporal variability Temporal variations Thermal diffusivity thermal gradients Thermistors Variation Vertical flow Vertical mixing vertical temperature profile Water temperature Wavelength |
title | Spectral Analysis of Vertical Temperature Profile Time‐Series Data in Yellowstone Lake Sediments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Analysis%20of%20Vertical%20Temperature%20Profile%20Time%E2%80%90Series%20Data%20in%20Yellowstone%20Lake%20Sediments&rft.jtitle=Water%20resources%20research&rft.au=Sohn,%20Robert%20A.&rft.date=2021-04&rft.volume=57&rft.issue=4&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2020WR028430&rft_dat=%3Cproquest_cross%3E2518476467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518476467&rft_id=info:pmid/&rfr_iscdi=true |