Pygo1 regulates pathological cardiac hypertrophy via a β-catenin-dependent mechanism

Wnt/β-catenin signaling plays a key role in pathological cardiac remodeling in adults. The identification of a tissue-specific Wnt/β-catenin interaction factor may provide a tissue-specific clinical targeting strategy. encodes the core interaction factor of Wnt/β-catenin. Two homologs ( and ) have b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Heart and circulatory physiology 2021-04, Vol.320 (4), p.H1634-H1645
Hauptverfasser: Lin, Li, Xu, Wei, Li, Yongqing, Zhu, Ping, Yuan, Wuzhou, Liu, Ming, Shi, Yan, Chen, Yu, Liang, Jifeng, Chen, Jimei, Yang, Boyu, Cai, Wanwan, Wen, Yao, Zhu, Xiaolan, Peng, Xiyang, Zhou, Zuoqiong, Mo, Xiaoyang, Wan, Yongqi, Yuan, Haiyun, Li, Fang, Ye, Xiangli, Jiang, Zhigang, Wang, Yuequn, Zhuang, Jian, Fan, Xiongwei, Wu, Xiushan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page H1645
container_issue 4
container_start_page H1634
container_title American journal of physiology. Heart and circulatory physiology
container_volume 320
creator Lin, Li
Xu, Wei
Li, Yongqing
Zhu, Ping
Yuan, Wuzhou
Liu, Ming
Shi, Yan
Chen, Yu
Liang, Jifeng
Chen, Jimei
Yang, Boyu
Cai, Wanwan
Wen, Yao
Zhu, Xiaolan
Peng, Xiyang
Zhou, Zuoqiong
Mo, Xiaoyang
Wan, Yongqi
Yuan, Haiyun
Li, Fang
Ye, Xiangli
Jiang, Zhigang
Wang, Yuequn
Zhuang, Jian
Fan, Xiongwei
Wu, Xiushan
description Wnt/β-catenin signaling plays a key role in pathological cardiac remodeling in adults. The identification of a tissue-specific Wnt/β-catenin interaction factor may provide a tissue-specific clinical targeting strategy. encodes the core interaction factor of Wnt/β-catenin. Two homologs ( and ) have been identified in mammals. Different from the ubiquitous expression profile of , is enriched in cardiac tissue. However, the role of in mammalian cardiac disease is yet to be elucidated. In this study, we found that was upregulated in human cardiac tissues with pathological hypertrophy. Cardiac-specific overexpression of in mice spontaneously led to cardiac hypertrophy accompanied by declined cardiac function, increased heart weight/body weight and heart weight/tibial length ratios, and increased cell size. The canonical β-catenin/T-cell transcription factor 4 (TCF4) complex was abundant in -overexpressing transgenic ( -TG) cardiac tissue, and the downstream genes of Wnt signaling, that is, , , and c-Myc, were upregulated. A tail vein injection of β-catenin inhibitor effectively rescued the phenotype of cardiac failure and pathological myocardial remodeling in -TG mice. Furthermore, in vivo downregulated during cardiac hypertrophic condition antagonized agonist-induced cardiac hypertrophy. Therefore, our study is the first to present in vivo evidence demonstrating that regulates pathological cardiac hypertrophy in a canonical Wnt/β-catenin-dependent manner, which may provide new clues for tissue-specific clinical treatment via targeting this pathway. In this study, we found that is associated with human pathological hypertrophy. Cardiac-specific overexpression of in mice spontaneously led to cardiac hypertrophy. Meanwhile, cardiac function was improved when expression of was interfered in hypertrophy-model mice. Our study is the first to present in vivo evidence demonstrating that regulates pathological cardiac hypertrophy in a canonical Wnt/β-catenin-dependent manner, which may provide new clues for a tissue-specific clinical treatment targeting this pathway.
doi_str_mv 10.1152/ajpheart.00538.2020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518420307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518420307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-b3e2400d401c03645f9f67d473798398d36c4bc8f4915e0fb33c388033ef0e263</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqXwBUjIEuuUsSdOnCWqeEmVYEHXluM4Taq8cBKk_BYfwjfhQstqFnPundEh5JrBkjHB7_SuK6x2wxJAoFxy4HBC5n7DAyYwOSVzwAiDiKGYkYu-34EH4wjPyQz9QrCIz8nmbdq2jDq7HSs92J52eijaqt2WRlfUaJeV2tBi6qwbXNsVE_0sNdX0-yswnm_KJshsZ5vMNgOtrSl0U_b1JTnLddXbq8NckM3jw_vqOVi_Pr2s7teBQZBDkKLlIUAWAjP-11DkSR7FWRhjnEhMZIaRCVMj8zBhwkKeIhqUEhBtDpZHuCC3f72daz9G2w9q146u8ScVF0yGHBBiT-EfZVzb987mqnNlrd2kGKi9SnVUqX5Vqr1Kn7o5dI9pbbP_zNEd_gC0VHGm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518420307</pqid></control><display><type>article</type><title>Pygo1 regulates pathological cardiac hypertrophy via a β-catenin-dependent mechanism</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Lin, Li ; Xu, Wei ; Li, Yongqing ; Zhu, Ping ; Yuan, Wuzhou ; Liu, Ming ; Shi, Yan ; Chen, Yu ; Liang, Jifeng ; Chen, Jimei ; Yang, Boyu ; Cai, Wanwan ; Wen, Yao ; Zhu, Xiaolan ; Peng, Xiyang ; Zhou, Zuoqiong ; Mo, Xiaoyang ; Wan, Yongqi ; Yuan, Haiyun ; Li, Fang ; Ye, Xiangli ; Jiang, Zhigang ; Wang, Yuequn ; Zhuang, Jian ; Fan, Xiongwei ; Wu, Xiushan</creator><creatorcontrib>Lin, Li ; Xu, Wei ; Li, Yongqing ; Zhu, Ping ; Yuan, Wuzhou ; Liu, Ming ; Shi, Yan ; Chen, Yu ; Liang, Jifeng ; Chen, Jimei ; Yang, Boyu ; Cai, Wanwan ; Wen, Yao ; Zhu, Xiaolan ; Peng, Xiyang ; Zhou, Zuoqiong ; Mo, Xiaoyang ; Wan, Yongqi ; Yuan, Haiyun ; Li, Fang ; Ye, Xiangli ; Jiang, Zhigang ; Wang, Yuequn ; Zhuang, Jian ; Fan, Xiongwei ; Wu, Xiushan</creatorcontrib><description>Wnt/β-catenin signaling plays a key role in pathological cardiac remodeling in adults. The identification of a tissue-specific Wnt/β-catenin interaction factor may provide a tissue-specific clinical targeting strategy. encodes the core interaction factor of Wnt/β-catenin. Two homologs ( and ) have been identified in mammals. Different from the ubiquitous expression profile of , is enriched in cardiac tissue. However, the role of in mammalian cardiac disease is yet to be elucidated. In this study, we found that was upregulated in human cardiac tissues with pathological hypertrophy. Cardiac-specific overexpression of in mice spontaneously led to cardiac hypertrophy accompanied by declined cardiac function, increased heart weight/body weight and heart weight/tibial length ratios, and increased cell size. The canonical β-catenin/T-cell transcription factor 4 (TCF4) complex was abundant in -overexpressing transgenic ( -TG) cardiac tissue, and the downstream genes of Wnt signaling, that is, , , and c-Myc, were upregulated. A tail vein injection of β-catenin inhibitor effectively rescued the phenotype of cardiac failure and pathological myocardial remodeling in -TG mice. Furthermore, in vivo downregulated during cardiac hypertrophic condition antagonized agonist-induced cardiac hypertrophy. Therefore, our study is the first to present in vivo evidence demonstrating that regulates pathological cardiac hypertrophy in a canonical Wnt/β-catenin-dependent manner, which may provide new clues for tissue-specific clinical treatment via targeting this pathway. In this study, we found that is associated with human pathological hypertrophy. Cardiac-specific overexpression of in mice spontaneously led to cardiac hypertrophy. Meanwhile, cardiac function was improved when expression of was interfered in hypertrophy-model mice. Our study is the first to present in vivo evidence demonstrating that regulates pathological cardiac hypertrophy in a canonical Wnt/β-catenin-dependent manner, which may provide new clues for a tissue-specific clinical treatment targeting this pathway.</description><identifier>ISSN: 0363-6135</identifier><identifier>EISSN: 1522-1539</identifier><identifier>DOI: 10.1152/ajpheart.00538.2020</identifier><identifier>PMID: 33635162</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Animals ; Axin Protein - genetics ; Axin Protein - metabolism ; beta Catenin - antagonists &amp; inhibitors ; beta Catenin - metabolism ; Body weight ; c-Myc protein ; Cell size ; Coronary artery disease ; Disease Models, Animal ; Heart diseases ; Heart Failure - chemically induced ; Heart Failure - metabolism ; Heart Failure - pathology ; Heart Failure - prevention &amp; control ; Homology ; Hypertrophy ; Hypertrophy, Left Ventricular - chemically induced ; Hypertrophy, Left Ventricular - drug therapy ; Hypertrophy, Left Ventricular - metabolism ; Hypertrophy, Left Ventricular - pathology ; In vivo methods and tests ; Isoproterenol ; Lymphocytes T ; Male ; Mammals ; Mice, Transgenic ; Myc protein ; Myocardium - metabolism ; Myocardium - pathology ; Phenotypes ; Proto-Oncogene Proteins c-myc - genetics ; Proto-Oncogene Proteins c-myc - metabolism ; Rats ; Receptor, EphB3 - genetics ; Receptor, EphB3 - metabolism ; Signaling ; Thiazolidines - pharmacology ; Tissues ; Transcription Factor 4 - genetics ; Transcription Factor 4 - metabolism ; Ventricular Function, Left - drug effects ; Ventricular Remodeling - drug effects ; Wnt protein ; Wnt Signaling Pathway - drug effects ; β-Catenin</subject><ispartof>American journal of physiology. Heart and circulatory physiology, 2021-04, Vol.320 (4), p.H1634-H1645</ispartof><rights>Copyright American Physiological Society Apr 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-b3e2400d401c03645f9f67d473798398d36c4bc8f4915e0fb33c388033ef0e263</citedby><cites>FETCH-LOGICAL-c308t-b3e2400d401c03645f9f67d473798398d36c4bc8f4915e0fb33c388033ef0e263</cites><orcidid>0000-0002-3278-3842 ; 0000-0002-8884-4202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3037,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33635162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Li</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Li, Yongqing</creatorcontrib><creatorcontrib>Zhu, Ping</creatorcontrib><creatorcontrib>Yuan, Wuzhou</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Shi, Yan</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Liang, Jifeng</creatorcontrib><creatorcontrib>Chen, Jimei</creatorcontrib><creatorcontrib>Yang, Boyu</creatorcontrib><creatorcontrib>Cai, Wanwan</creatorcontrib><creatorcontrib>Wen, Yao</creatorcontrib><creatorcontrib>Zhu, Xiaolan</creatorcontrib><creatorcontrib>Peng, Xiyang</creatorcontrib><creatorcontrib>Zhou, Zuoqiong</creatorcontrib><creatorcontrib>Mo, Xiaoyang</creatorcontrib><creatorcontrib>Wan, Yongqi</creatorcontrib><creatorcontrib>Yuan, Haiyun</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Ye, Xiangli</creatorcontrib><creatorcontrib>Jiang, Zhigang</creatorcontrib><creatorcontrib>Wang, Yuequn</creatorcontrib><creatorcontrib>Zhuang, Jian</creatorcontrib><creatorcontrib>Fan, Xiongwei</creatorcontrib><creatorcontrib>Wu, Xiushan</creatorcontrib><title>Pygo1 regulates pathological cardiac hypertrophy via a β-catenin-dependent mechanism</title><title>American journal of physiology. Heart and circulatory physiology</title><addtitle>Am J Physiol Heart Circ Physiol</addtitle><description>Wnt/β-catenin signaling plays a key role in pathological cardiac remodeling in adults. The identification of a tissue-specific Wnt/β-catenin interaction factor may provide a tissue-specific clinical targeting strategy. encodes the core interaction factor of Wnt/β-catenin. Two homologs ( and ) have been identified in mammals. Different from the ubiquitous expression profile of , is enriched in cardiac tissue. However, the role of in mammalian cardiac disease is yet to be elucidated. In this study, we found that was upregulated in human cardiac tissues with pathological hypertrophy. Cardiac-specific overexpression of in mice spontaneously led to cardiac hypertrophy accompanied by declined cardiac function, increased heart weight/body weight and heart weight/tibial length ratios, and increased cell size. The canonical β-catenin/T-cell transcription factor 4 (TCF4) complex was abundant in -overexpressing transgenic ( -TG) cardiac tissue, and the downstream genes of Wnt signaling, that is, , , and c-Myc, were upregulated. A tail vein injection of β-catenin inhibitor effectively rescued the phenotype of cardiac failure and pathological myocardial remodeling in -TG mice. Furthermore, in vivo downregulated during cardiac hypertrophic condition antagonized agonist-induced cardiac hypertrophy. Therefore, our study is the first to present in vivo evidence demonstrating that regulates pathological cardiac hypertrophy in a canonical Wnt/β-catenin-dependent manner, which may provide new clues for tissue-specific clinical treatment via targeting this pathway. In this study, we found that is associated with human pathological hypertrophy. Cardiac-specific overexpression of in mice spontaneously led to cardiac hypertrophy. Meanwhile, cardiac function was improved when expression of was interfered in hypertrophy-model mice. Our study is the first to present in vivo evidence demonstrating that regulates pathological cardiac hypertrophy in a canonical Wnt/β-catenin-dependent manner, which may provide new clues for a tissue-specific clinical treatment targeting this pathway.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Animals</subject><subject>Axin Protein - genetics</subject><subject>Axin Protein - metabolism</subject><subject>beta Catenin - antagonists &amp; inhibitors</subject><subject>beta Catenin - metabolism</subject><subject>Body weight</subject><subject>c-Myc protein</subject><subject>Cell size</subject><subject>Coronary artery disease</subject><subject>Disease Models, Animal</subject><subject>Heart diseases</subject><subject>Heart Failure - chemically induced</subject><subject>Heart Failure - metabolism</subject><subject>Heart Failure - pathology</subject><subject>Heart Failure - prevention &amp; control</subject><subject>Homology</subject><subject>Hypertrophy</subject><subject>Hypertrophy, Left Ventricular - chemically induced</subject><subject>Hypertrophy, Left Ventricular - drug therapy</subject><subject>Hypertrophy, Left Ventricular - metabolism</subject><subject>Hypertrophy, Left Ventricular - pathology</subject><subject>In vivo methods and tests</subject><subject>Isoproterenol</subject><subject>Lymphocytes T</subject><subject>Male</subject><subject>Mammals</subject><subject>Mice, Transgenic</subject><subject>Myc protein</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Phenotypes</subject><subject>Proto-Oncogene Proteins c-myc - genetics</subject><subject>Proto-Oncogene Proteins c-myc - metabolism</subject><subject>Rats</subject><subject>Receptor, EphB3 - genetics</subject><subject>Receptor, EphB3 - metabolism</subject><subject>Signaling</subject><subject>Thiazolidines - pharmacology</subject><subject>Tissues</subject><subject>Transcription Factor 4 - genetics</subject><subject>Transcription Factor 4 - metabolism</subject><subject>Ventricular Function, Left - drug effects</subject><subject>Ventricular Remodeling - drug effects</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway - drug effects</subject><subject>β-Catenin</subject><issn>0363-6135</issn><issn>1522-1539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtOwzAQRS0EoqXwBUjIEuuUsSdOnCWqeEmVYEHXluM4Taq8cBKk_BYfwjfhQstqFnPundEh5JrBkjHB7_SuK6x2wxJAoFxy4HBC5n7DAyYwOSVzwAiDiKGYkYu-34EH4wjPyQz9QrCIz8nmbdq2jDq7HSs92J52eijaqt2WRlfUaJeV2tBi6qwbXNsVE_0sNdX0-yswnm_KJshsZ5vMNgOtrSl0U_b1JTnLddXbq8NckM3jw_vqOVi_Pr2s7teBQZBDkKLlIUAWAjP-11DkSR7FWRhjnEhMZIaRCVMj8zBhwkKeIhqUEhBtDpZHuCC3f72daz9G2w9q146u8ScVF0yGHBBiT-EfZVzb987mqnNlrd2kGKi9SnVUqX5Vqr1Kn7o5dI9pbbP_zNEd_gC0VHGm</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Lin, Li</creator><creator>Xu, Wei</creator><creator>Li, Yongqing</creator><creator>Zhu, Ping</creator><creator>Yuan, Wuzhou</creator><creator>Liu, Ming</creator><creator>Shi, Yan</creator><creator>Chen, Yu</creator><creator>Liang, Jifeng</creator><creator>Chen, Jimei</creator><creator>Yang, Boyu</creator><creator>Cai, Wanwan</creator><creator>Wen, Yao</creator><creator>Zhu, Xiaolan</creator><creator>Peng, Xiyang</creator><creator>Zhou, Zuoqiong</creator><creator>Mo, Xiaoyang</creator><creator>Wan, Yongqi</creator><creator>Yuan, Haiyun</creator><creator>Li, Fang</creator><creator>Ye, Xiangli</creator><creator>Jiang, Zhigang</creator><creator>Wang, Yuequn</creator><creator>Zhuang, Jian</creator><creator>Fan, Xiongwei</creator><creator>Wu, Xiushan</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-3278-3842</orcidid><orcidid>https://orcid.org/0000-0002-8884-4202</orcidid></search><sort><creationdate>20210401</creationdate><title>Pygo1 regulates pathological cardiac hypertrophy via a β-catenin-dependent mechanism</title><author>Lin, Li ; Xu, Wei ; Li, Yongqing ; Zhu, Ping ; Yuan, Wuzhou ; Liu, Ming ; Shi, Yan ; Chen, Yu ; Liang, Jifeng ; Chen, Jimei ; Yang, Boyu ; Cai, Wanwan ; Wen, Yao ; Zhu, Xiaolan ; Peng, Xiyang ; Zhou, Zuoqiong ; Mo, Xiaoyang ; Wan, Yongqi ; Yuan, Haiyun ; Li, Fang ; Ye, Xiangli ; Jiang, Zhigang ; Wang, Yuequn ; Zhuang, Jian ; Fan, Xiongwei ; Wu, Xiushan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-b3e2400d401c03645f9f67d473798398d36c4bc8f4915e0fb33c388033ef0e263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Animals</topic><topic>Axin Protein - genetics</topic><topic>Axin Protein - metabolism</topic><topic>beta Catenin - antagonists &amp; inhibitors</topic><topic>beta Catenin - metabolism</topic><topic>Body weight</topic><topic>c-Myc protein</topic><topic>Cell size</topic><topic>Coronary artery disease</topic><topic>Disease Models, Animal</topic><topic>Heart diseases</topic><topic>Heart Failure - chemically induced</topic><topic>Heart Failure - metabolism</topic><topic>Heart Failure - pathology</topic><topic>Heart Failure - prevention &amp; control</topic><topic>Homology</topic><topic>Hypertrophy</topic><topic>Hypertrophy, Left Ventricular - chemically induced</topic><topic>Hypertrophy, Left Ventricular - drug therapy</topic><topic>Hypertrophy, Left Ventricular - metabolism</topic><topic>Hypertrophy, Left Ventricular - pathology</topic><topic>In vivo methods and tests</topic><topic>Isoproterenol</topic><topic>Lymphocytes T</topic><topic>Male</topic><topic>Mammals</topic><topic>Mice, Transgenic</topic><topic>Myc protein</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Phenotypes</topic><topic>Proto-Oncogene Proteins c-myc - genetics</topic><topic>Proto-Oncogene Proteins c-myc - metabolism</topic><topic>Rats</topic><topic>Receptor, EphB3 - genetics</topic><topic>Receptor, EphB3 - metabolism</topic><topic>Signaling</topic><topic>Thiazolidines - pharmacology</topic><topic>Tissues</topic><topic>Transcription Factor 4 - genetics</topic><topic>Transcription Factor 4 - metabolism</topic><topic>Ventricular Function, Left - drug effects</topic><topic>Ventricular Remodeling - drug effects</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway - drug effects</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Li</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Li, Yongqing</creatorcontrib><creatorcontrib>Zhu, Ping</creatorcontrib><creatorcontrib>Yuan, Wuzhou</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Shi, Yan</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Liang, Jifeng</creatorcontrib><creatorcontrib>Chen, Jimei</creatorcontrib><creatorcontrib>Yang, Boyu</creatorcontrib><creatorcontrib>Cai, Wanwan</creatorcontrib><creatorcontrib>Wen, Yao</creatorcontrib><creatorcontrib>Zhu, Xiaolan</creatorcontrib><creatorcontrib>Peng, Xiyang</creatorcontrib><creatorcontrib>Zhou, Zuoqiong</creatorcontrib><creatorcontrib>Mo, Xiaoyang</creatorcontrib><creatorcontrib>Wan, Yongqi</creatorcontrib><creatorcontrib>Yuan, Haiyun</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Ye, Xiangli</creatorcontrib><creatorcontrib>Jiang, Zhigang</creatorcontrib><creatorcontrib>Wang, Yuequn</creatorcontrib><creatorcontrib>Zhuang, Jian</creatorcontrib><creatorcontrib>Fan, Xiongwei</creatorcontrib><creatorcontrib>Wu, Xiushan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>American journal of physiology. Heart and circulatory physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Li</au><au>Xu, Wei</au><au>Li, Yongqing</au><au>Zhu, Ping</au><au>Yuan, Wuzhou</au><au>Liu, Ming</au><au>Shi, Yan</au><au>Chen, Yu</au><au>Liang, Jifeng</au><au>Chen, Jimei</au><au>Yang, Boyu</au><au>Cai, Wanwan</au><au>Wen, Yao</au><au>Zhu, Xiaolan</au><au>Peng, Xiyang</au><au>Zhou, Zuoqiong</au><au>Mo, Xiaoyang</au><au>Wan, Yongqi</au><au>Yuan, Haiyun</au><au>Li, Fang</au><au>Ye, Xiangli</au><au>Jiang, Zhigang</au><au>Wang, Yuequn</au><au>Zhuang, Jian</au><au>Fan, Xiongwei</au><au>Wu, Xiushan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pygo1 regulates pathological cardiac hypertrophy via a β-catenin-dependent mechanism</atitle><jtitle>American journal of physiology. Heart and circulatory physiology</jtitle><addtitle>Am J Physiol Heart Circ Physiol</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>320</volume><issue>4</issue><spage>H1634</spage><epage>H1645</epage><pages>H1634-H1645</pages><issn>0363-6135</issn><eissn>1522-1539</eissn><abstract>Wnt/β-catenin signaling plays a key role in pathological cardiac remodeling in adults. The identification of a tissue-specific Wnt/β-catenin interaction factor may provide a tissue-specific clinical targeting strategy. encodes the core interaction factor of Wnt/β-catenin. Two homologs ( and ) have been identified in mammals. Different from the ubiquitous expression profile of , is enriched in cardiac tissue. However, the role of in mammalian cardiac disease is yet to be elucidated. In this study, we found that was upregulated in human cardiac tissues with pathological hypertrophy. Cardiac-specific overexpression of in mice spontaneously led to cardiac hypertrophy accompanied by declined cardiac function, increased heart weight/body weight and heart weight/tibial length ratios, and increased cell size. The canonical β-catenin/T-cell transcription factor 4 (TCF4) complex was abundant in -overexpressing transgenic ( -TG) cardiac tissue, and the downstream genes of Wnt signaling, that is, , , and c-Myc, were upregulated. A tail vein injection of β-catenin inhibitor effectively rescued the phenotype of cardiac failure and pathological myocardial remodeling in -TG mice. Furthermore, in vivo downregulated during cardiac hypertrophic condition antagonized agonist-induced cardiac hypertrophy. Therefore, our study is the first to present in vivo evidence demonstrating that regulates pathological cardiac hypertrophy in a canonical Wnt/β-catenin-dependent manner, which may provide new clues for tissue-specific clinical treatment via targeting this pathway. In this study, we found that is associated with human pathological hypertrophy. Cardiac-specific overexpression of in mice spontaneously led to cardiac hypertrophy. Meanwhile, cardiac function was improved when expression of was interfered in hypertrophy-model mice. Our study is the first to present in vivo evidence demonstrating that regulates pathological cardiac hypertrophy in a canonical Wnt/β-catenin-dependent manner, which may provide new clues for a tissue-specific clinical treatment targeting this pathway.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>33635162</pmid><doi>10.1152/ajpheart.00538.2020</doi><orcidid>https://orcid.org/0000-0002-3278-3842</orcidid><orcidid>https://orcid.org/0000-0002-8884-4202</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-6135
ispartof American journal of physiology. Heart and circulatory physiology, 2021-04, Vol.320 (4), p.H1634-H1645
issn 0363-6135
1522-1539
language eng
recordid cdi_proquest_journals_2518420307
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Animals
Axin Protein - genetics
Axin Protein - metabolism
beta Catenin - antagonists & inhibitors
beta Catenin - metabolism
Body weight
c-Myc protein
Cell size
Coronary artery disease
Disease Models, Animal
Heart diseases
Heart Failure - chemically induced
Heart Failure - metabolism
Heart Failure - pathology
Heart Failure - prevention & control
Homology
Hypertrophy
Hypertrophy, Left Ventricular - chemically induced
Hypertrophy, Left Ventricular - drug therapy
Hypertrophy, Left Ventricular - metabolism
Hypertrophy, Left Ventricular - pathology
In vivo methods and tests
Isoproterenol
Lymphocytes T
Male
Mammals
Mice, Transgenic
Myc protein
Myocardium - metabolism
Myocardium - pathology
Phenotypes
Proto-Oncogene Proteins c-myc - genetics
Proto-Oncogene Proteins c-myc - metabolism
Rats
Receptor, EphB3 - genetics
Receptor, EphB3 - metabolism
Signaling
Thiazolidines - pharmacology
Tissues
Transcription Factor 4 - genetics
Transcription Factor 4 - metabolism
Ventricular Function, Left - drug effects
Ventricular Remodeling - drug effects
Wnt protein
Wnt Signaling Pathway - drug effects
β-Catenin
title Pygo1 regulates pathological cardiac hypertrophy via a β-catenin-dependent mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pygo1%20regulates%20pathological%20cardiac%20hypertrophy%20via%20a%20%CE%B2-catenin-dependent%20mechanism&rft.jtitle=American%20journal%20of%20physiology.%20Heart%20and%20circulatory%20physiology&rft.au=Lin,%20Li&rft.date=2021-04-01&rft.volume=320&rft.issue=4&rft.spage=H1634&rft.epage=H1645&rft.pages=H1634-H1645&rft.issn=0363-6135&rft.eissn=1522-1539&rft_id=info:doi/10.1152/ajpheart.00538.2020&rft_dat=%3Cproquest_cross%3E2518420307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518420307&rft_id=info:pmid/33635162&rfr_iscdi=true