Pygo1 regulates pathological cardiac hypertrophy via a β-catenin-dependent mechanism
Wnt/β-catenin signaling plays a key role in pathological cardiac remodeling in adults. The identification of a tissue-specific Wnt/β-catenin interaction factor may provide a tissue-specific clinical targeting strategy. encodes the core interaction factor of Wnt/β-catenin. Two homologs ( and ) have b...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Heart and circulatory physiology 2021-04, Vol.320 (4), p.H1634-H1645 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | H1645 |
---|---|
container_issue | 4 |
container_start_page | H1634 |
container_title | American journal of physiology. Heart and circulatory physiology |
container_volume | 320 |
creator | Lin, Li Xu, Wei Li, Yongqing Zhu, Ping Yuan, Wuzhou Liu, Ming Shi, Yan Chen, Yu Liang, Jifeng Chen, Jimei Yang, Boyu Cai, Wanwan Wen, Yao Zhu, Xiaolan Peng, Xiyang Zhou, Zuoqiong Mo, Xiaoyang Wan, Yongqi Yuan, Haiyun Li, Fang Ye, Xiangli Jiang, Zhigang Wang, Yuequn Zhuang, Jian Fan, Xiongwei Wu, Xiushan |
description | Wnt/β-catenin signaling plays a key role in pathological cardiac remodeling in adults. The identification of a tissue-specific Wnt/β-catenin interaction factor may provide a tissue-specific clinical targeting strategy.
encodes the core interaction factor of Wnt/β-catenin. Two
homologs (
and
) have been identified in mammals. Different from the ubiquitous expression profile of
,
is enriched in cardiac tissue. However, the role of
in mammalian cardiac disease is yet to be elucidated. In this study, we found that
was upregulated in human cardiac tissues with pathological hypertrophy. Cardiac-specific overexpression of
in mice spontaneously led to cardiac hypertrophy accompanied by declined cardiac function, increased heart weight/body weight and heart weight/tibial length ratios, and increased cell size. The canonical β-catenin/T-cell transcription factor 4 (TCF4) complex was abundant in
-overexpressing transgenic (
-TG) cardiac tissue, and the downstream genes of Wnt signaling, that is,
,
, and c-Myc, were upregulated. A tail vein injection of β-catenin inhibitor effectively rescued the phenotype of cardiac failure and pathological myocardial remodeling in
-TG mice. Furthermore, in vivo downregulated
during cardiac hypertrophic condition antagonized agonist-induced cardiac hypertrophy. Therefore, our study is the first to present in vivo evidence demonstrating that
regulates pathological cardiac hypertrophy in a canonical Wnt/β-catenin-dependent manner, which may provide new clues for tissue-specific clinical treatment via targeting this pathway.
In this study, we found that
is associated with human pathological hypertrophy. Cardiac-specific overexpression of
in mice spontaneously led to cardiac hypertrophy. Meanwhile, cardiac function was improved when expression of
was interfered in hypertrophy-model mice. Our study is the first to present in vivo evidence demonstrating that
regulates pathological cardiac hypertrophy in a canonical Wnt/β-catenin-dependent manner, which may provide new clues for a tissue-specific clinical treatment targeting this pathway. |
doi_str_mv | 10.1152/ajpheart.00538.2020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518420307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518420307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-b3e2400d401c03645f9f67d473798398d36c4bc8f4915e0fb33c388033ef0e263</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqXwBUjIEuuUsSdOnCWqeEmVYEHXluM4Taq8cBKk_BYfwjfhQstqFnPundEh5JrBkjHB7_SuK6x2wxJAoFxy4HBC5n7DAyYwOSVzwAiDiKGYkYu-34EH4wjPyQz9QrCIz8nmbdq2jDq7HSs92J52eijaqt2WRlfUaJeV2tBi6qwbXNsVE_0sNdX0-yswnm_KJshsZ5vMNgOtrSl0U_b1JTnLddXbq8NckM3jw_vqOVi_Pr2s7teBQZBDkKLlIUAWAjP-11DkSR7FWRhjnEhMZIaRCVMj8zBhwkKeIhqUEhBtDpZHuCC3f72daz9G2w9q146u8ScVF0yGHBBiT-EfZVzb987mqnNlrd2kGKi9SnVUqX5Vqr1Kn7o5dI9pbbP_zNEd_gC0VHGm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518420307</pqid></control><display><type>article</type><title>Pygo1 regulates pathological cardiac hypertrophy via a β-catenin-dependent mechanism</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Lin, Li ; Xu, Wei ; Li, Yongqing ; Zhu, Ping ; Yuan, Wuzhou ; Liu, Ming ; Shi, Yan ; Chen, Yu ; Liang, Jifeng ; Chen, Jimei ; Yang, Boyu ; Cai, Wanwan ; Wen, Yao ; Zhu, Xiaolan ; Peng, Xiyang ; Zhou, Zuoqiong ; Mo, Xiaoyang ; Wan, Yongqi ; Yuan, Haiyun ; Li, Fang ; Ye, Xiangli ; Jiang, Zhigang ; Wang, Yuequn ; Zhuang, Jian ; Fan, Xiongwei ; Wu, Xiushan</creator><creatorcontrib>Lin, Li ; Xu, Wei ; Li, Yongqing ; Zhu, Ping ; Yuan, Wuzhou ; Liu, Ming ; Shi, Yan ; Chen, Yu ; Liang, Jifeng ; Chen, Jimei ; Yang, Boyu ; Cai, Wanwan ; Wen, Yao ; Zhu, Xiaolan ; Peng, Xiyang ; Zhou, Zuoqiong ; Mo, Xiaoyang ; Wan, Yongqi ; Yuan, Haiyun ; Li, Fang ; Ye, Xiangli ; Jiang, Zhigang ; Wang, Yuequn ; Zhuang, Jian ; Fan, Xiongwei ; Wu, Xiushan</creatorcontrib><description>Wnt/β-catenin signaling plays a key role in pathological cardiac remodeling in adults. The identification of a tissue-specific Wnt/β-catenin interaction factor may provide a tissue-specific clinical targeting strategy.
encodes the core interaction factor of Wnt/β-catenin. Two
homologs (
and
) have been identified in mammals. Different from the ubiquitous expression profile of
,
is enriched in cardiac tissue. However, the role of
in mammalian cardiac disease is yet to be elucidated. In this study, we found that
was upregulated in human cardiac tissues with pathological hypertrophy. Cardiac-specific overexpression of
in mice spontaneously led to cardiac hypertrophy accompanied by declined cardiac function, increased heart weight/body weight and heart weight/tibial length ratios, and increased cell size. The canonical β-catenin/T-cell transcription factor 4 (TCF4) complex was abundant in
-overexpressing transgenic (
-TG) cardiac tissue, and the downstream genes of Wnt signaling, that is,
,
, and c-Myc, were upregulated. A tail vein injection of β-catenin inhibitor effectively rescued the phenotype of cardiac failure and pathological myocardial remodeling in
-TG mice. Furthermore, in vivo downregulated
during cardiac hypertrophic condition antagonized agonist-induced cardiac hypertrophy. Therefore, our study is the first to present in vivo evidence demonstrating that
regulates pathological cardiac hypertrophy in a canonical Wnt/β-catenin-dependent manner, which may provide new clues for tissue-specific clinical treatment via targeting this pathway.
In this study, we found that
is associated with human pathological hypertrophy. Cardiac-specific overexpression of
in mice spontaneously led to cardiac hypertrophy. Meanwhile, cardiac function was improved when expression of
was interfered in hypertrophy-model mice. Our study is the first to present in vivo evidence demonstrating that
regulates pathological cardiac hypertrophy in a canonical Wnt/β-catenin-dependent manner, which may provide new clues for a tissue-specific clinical treatment targeting this pathway.</description><identifier>ISSN: 0363-6135</identifier><identifier>EISSN: 1522-1539</identifier><identifier>DOI: 10.1152/ajpheart.00538.2020</identifier><identifier>PMID: 33635162</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Animals ; Axin Protein - genetics ; Axin Protein - metabolism ; beta Catenin - antagonists & inhibitors ; beta Catenin - metabolism ; Body weight ; c-Myc protein ; Cell size ; Coronary artery disease ; Disease Models, Animal ; Heart diseases ; Heart Failure - chemically induced ; Heart Failure - metabolism ; Heart Failure - pathology ; Heart Failure - prevention & control ; Homology ; Hypertrophy ; Hypertrophy, Left Ventricular - chemically induced ; Hypertrophy, Left Ventricular - drug therapy ; Hypertrophy, Left Ventricular - metabolism ; Hypertrophy, Left Ventricular - pathology ; In vivo methods and tests ; Isoproterenol ; Lymphocytes T ; Male ; Mammals ; Mice, Transgenic ; Myc protein ; Myocardium - metabolism ; Myocardium - pathology ; Phenotypes ; Proto-Oncogene Proteins c-myc - genetics ; Proto-Oncogene Proteins c-myc - metabolism ; Rats ; Receptor, EphB3 - genetics ; Receptor, EphB3 - metabolism ; Signaling ; Thiazolidines - pharmacology ; Tissues ; Transcription Factor 4 - genetics ; Transcription Factor 4 - metabolism ; Ventricular Function, Left - drug effects ; Ventricular Remodeling - drug effects ; Wnt protein ; Wnt Signaling Pathway - drug effects ; β-Catenin</subject><ispartof>American journal of physiology. Heart and circulatory physiology, 2021-04, Vol.320 (4), p.H1634-H1645</ispartof><rights>Copyright American Physiological Society Apr 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-b3e2400d401c03645f9f67d473798398d36c4bc8f4915e0fb33c388033ef0e263</citedby><cites>FETCH-LOGICAL-c308t-b3e2400d401c03645f9f67d473798398d36c4bc8f4915e0fb33c388033ef0e263</cites><orcidid>0000-0002-3278-3842 ; 0000-0002-8884-4202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3037,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33635162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Li</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Li, Yongqing</creatorcontrib><creatorcontrib>Zhu, Ping</creatorcontrib><creatorcontrib>Yuan, Wuzhou</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Shi, Yan</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Liang, Jifeng</creatorcontrib><creatorcontrib>Chen, Jimei</creatorcontrib><creatorcontrib>Yang, Boyu</creatorcontrib><creatorcontrib>Cai, Wanwan</creatorcontrib><creatorcontrib>Wen, Yao</creatorcontrib><creatorcontrib>Zhu, Xiaolan</creatorcontrib><creatorcontrib>Peng, Xiyang</creatorcontrib><creatorcontrib>Zhou, Zuoqiong</creatorcontrib><creatorcontrib>Mo, Xiaoyang</creatorcontrib><creatorcontrib>Wan, Yongqi</creatorcontrib><creatorcontrib>Yuan, Haiyun</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Ye, Xiangli</creatorcontrib><creatorcontrib>Jiang, Zhigang</creatorcontrib><creatorcontrib>Wang, Yuequn</creatorcontrib><creatorcontrib>Zhuang, Jian</creatorcontrib><creatorcontrib>Fan, Xiongwei</creatorcontrib><creatorcontrib>Wu, Xiushan</creatorcontrib><title>Pygo1 regulates pathological cardiac hypertrophy via a β-catenin-dependent mechanism</title><title>American journal of physiology. Heart and circulatory physiology</title><addtitle>Am J Physiol Heart Circ Physiol</addtitle><description>Wnt/β-catenin signaling plays a key role in pathological cardiac remodeling in adults. The identification of a tissue-specific Wnt/β-catenin interaction factor may provide a tissue-specific clinical targeting strategy.
encodes the core interaction factor of Wnt/β-catenin. Two
homologs (
and
) have been identified in mammals. Different from the ubiquitous expression profile of
,
is enriched in cardiac tissue. However, the role of
in mammalian cardiac disease is yet to be elucidated. In this study, we found that
was upregulated in human cardiac tissues with pathological hypertrophy. Cardiac-specific overexpression of
in mice spontaneously led to cardiac hypertrophy accompanied by declined cardiac function, increased heart weight/body weight and heart weight/tibial length ratios, and increased cell size. The canonical β-catenin/T-cell transcription factor 4 (TCF4) complex was abundant in
-overexpressing transgenic (
-TG) cardiac tissue, and the downstream genes of Wnt signaling, that is,
,
, and c-Myc, were upregulated. A tail vein injection of β-catenin inhibitor effectively rescued the phenotype of cardiac failure and pathological myocardial remodeling in
-TG mice. Furthermore, in vivo downregulated
during cardiac hypertrophic condition antagonized agonist-induced cardiac hypertrophy. Therefore, our study is the first to present in vivo evidence demonstrating that
regulates pathological cardiac hypertrophy in a canonical Wnt/β-catenin-dependent manner, which may provide new clues for tissue-specific clinical treatment via targeting this pathway.
In this study, we found that
is associated with human pathological hypertrophy. Cardiac-specific overexpression of
in mice spontaneously led to cardiac hypertrophy. Meanwhile, cardiac function was improved when expression of
was interfered in hypertrophy-model mice. Our study is the first to present in vivo evidence demonstrating that
regulates pathological cardiac hypertrophy in a canonical Wnt/β-catenin-dependent manner, which may provide new clues for a tissue-specific clinical treatment targeting this pathway.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Animals</subject><subject>Axin Protein - genetics</subject><subject>Axin Protein - metabolism</subject><subject>beta Catenin - antagonists & inhibitors</subject><subject>beta Catenin - metabolism</subject><subject>Body weight</subject><subject>c-Myc protein</subject><subject>Cell size</subject><subject>Coronary artery disease</subject><subject>Disease Models, Animal</subject><subject>Heart diseases</subject><subject>Heart Failure - chemically induced</subject><subject>Heart Failure - metabolism</subject><subject>Heart Failure - pathology</subject><subject>Heart Failure - prevention & control</subject><subject>Homology</subject><subject>Hypertrophy</subject><subject>Hypertrophy, Left Ventricular - chemically induced</subject><subject>Hypertrophy, Left Ventricular - drug therapy</subject><subject>Hypertrophy, Left Ventricular - metabolism</subject><subject>Hypertrophy, Left Ventricular - pathology</subject><subject>In vivo methods and tests</subject><subject>Isoproterenol</subject><subject>Lymphocytes T</subject><subject>Male</subject><subject>Mammals</subject><subject>Mice, Transgenic</subject><subject>Myc protein</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Phenotypes</subject><subject>Proto-Oncogene Proteins c-myc - genetics</subject><subject>Proto-Oncogene Proteins c-myc - metabolism</subject><subject>Rats</subject><subject>Receptor, EphB3 - genetics</subject><subject>Receptor, EphB3 - metabolism</subject><subject>Signaling</subject><subject>Thiazolidines - pharmacology</subject><subject>Tissues</subject><subject>Transcription Factor 4 - genetics</subject><subject>Transcription Factor 4 - metabolism</subject><subject>Ventricular Function, Left - drug effects</subject><subject>Ventricular Remodeling - drug effects</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway - drug effects</subject><subject>β-Catenin</subject><issn>0363-6135</issn><issn>1522-1539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtOwzAQRS0EoqXwBUjIEuuUsSdOnCWqeEmVYEHXluM4Taq8cBKk_BYfwjfhQstqFnPundEh5JrBkjHB7_SuK6x2wxJAoFxy4HBC5n7DAyYwOSVzwAiDiKGYkYu-34EH4wjPyQz9QrCIz8nmbdq2jDq7HSs92J52eijaqt2WRlfUaJeV2tBi6qwbXNsVE_0sNdX0-yswnm_KJshsZ5vMNgOtrSl0U_b1JTnLddXbq8NckM3jw_vqOVi_Pr2s7teBQZBDkKLlIUAWAjP-11DkSR7FWRhjnEhMZIaRCVMj8zBhwkKeIhqUEhBtDpZHuCC3f72daz9G2w9q146u8ScVF0yGHBBiT-EfZVzb987mqnNlrd2kGKi9SnVUqX5Vqr1Kn7o5dI9pbbP_zNEd_gC0VHGm</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Lin, Li</creator><creator>Xu, Wei</creator><creator>Li, Yongqing</creator><creator>Zhu, Ping</creator><creator>Yuan, Wuzhou</creator><creator>Liu, Ming</creator><creator>Shi, Yan</creator><creator>Chen, Yu</creator><creator>Liang, Jifeng</creator><creator>Chen, Jimei</creator><creator>Yang, Boyu</creator><creator>Cai, Wanwan</creator><creator>Wen, Yao</creator><creator>Zhu, Xiaolan</creator><creator>Peng, Xiyang</creator><creator>Zhou, Zuoqiong</creator><creator>Mo, Xiaoyang</creator><creator>Wan, Yongqi</creator><creator>Yuan, Haiyun</creator><creator>Li, Fang</creator><creator>Ye, Xiangli</creator><creator>Jiang, Zhigang</creator><creator>Wang, Yuequn</creator><creator>Zhuang, Jian</creator><creator>Fan, Xiongwei</creator><creator>Wu, Xiushan</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-3278-3842</orcidid><orcidid>https://orcid.org/0000-0002-8884-4202</orcidid></search><sort><creationdate>20210401</creationdate><title>Pygo1 regulates pathological cardiac hypertrophy via a β-catenin-dependent mechanism</title><author>Lin, Li ; Xu, Wei ; Li, Yongqing ; Zhu, Ping ; Yuan, Wuzhou ; Liu, Ming ; Shi, Yan ; Chen, Yu ; Liang, Jifeng ; Chen, Jimei ; Yang, Boyu ; Cai, Wanwan ; Wen, Yao ; Zhu, Xiaolan ; Peng, Xiyang ; Zhou, Zuoqiong ; Mo, Xiaoyang ; Wan, Yongqi ; Yuan, Haiyun ; Li, Fang ; Ye, Xiangli ; Jiang, Zhigang ; Wang, Yuequn ; Zhuang, Jian ; Fan, Xiongwei ; Wu, Xiushan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-b3e2400d401c03645f9f67d473798398d36c4bc8f4915e0fb33c388033ef0e263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Animals</topic><topic>Axin Protein - genetics</topic><topic>Axin Protein - metabolism</topic><topic>beta Catenin - antagonists & inhibitors</topic><topic>beta Catenin - metabolism</topic><topic>Body weight</topic><topic>c-Myc protein</topic><topic>Cell size</topic><topic>Coronary artery disease</topic><topic>Disease Models, Animal</topic><topic>Heart diseases</topic><topic>Heart Failure - chemically induced</topic><topic>Heart Failure - metabolism</topic><topic>Heart Failure - pathology</topic><topic>Heart Failure - prevention & control</topic><topic>Homology</topic><topic>Hypertrophy</topic><topic>Hypertrophy, Left Ventricular - chemically induced</topic><topic>Hypertrophy, Left Ventricular - drug therapy</topic><topic>Hypertrophy, Left Ventricular - metabolism</topic><topic>Hypertrophy, Left Ventricular - pathology</topic><topic>In vivo methods and tests</topic><topic>Isoproterenol</topic><topic>Lymphocytes T</topic><topic>Male</topic><topic>Mammals</topic><topic>Mice, Transgenic</topic><topic>Myc protein</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Phenotypes</topic><topic>Proto-Oncogene Proteins c-myc - genetics</topic><topic>Proto-Oncogene Proteins c-myc - metabolism</topic><topic>Rats</topic><topic>Receptor, EphB3 - genetics</topic><topic>Receptor, EphB3 - metabolism</topic><topic>Signaling</topic><topic>Thiazolidines - pharmacology</topic><topic>Tissues</topic><topic>Transcription Factor 4 - genetics</topic><topic>Transcription Factor 4 - metabolism</topic><topic>Ventricular Function, Left - drug effects</topic><topic>Ventricular Remodeling - drug effects</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway - drug effects</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Li</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Li, Yongqing</creatorcontrib><creatorcontrib>Zhu, Ping</creatorcontrib><creatorcontrib>Yuan, Wuzhou</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Shi, Yan</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Liang, Jifeng</creatorcontrib><creatorcontrib>Chen, Jimei</creatorcontrib><creatorcontrib>Yang, Boyu</creatorcontrib><creatorcontrib>Cai, Wanwan</creatorcontrib><creatorcontrib>Wen, Yao</creatorcontrib><creatorcontrib>Zhu, Xiaolan</creatorcontrib><creatorcontrib>Peng, Xiyang</creatorcontrib><creatorcontrib>Zhou, Zuoqiong</creatorcontrib><creatorcontrib>Mo, Xiaoyang</creatorcontrib><creatorcontrib>Wan, Yongqi</creatorcontrib><creatorcontrib>Yuan, Haiyun</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Ye, Xiangli</creatorcontrib><creatorcontrib>Jiang, Zhigang</creatorcontrib><creatorcontrib>Wang, Yuequn</creatorcontrib><creatorcontrib>Zhuang, Jian</creatorcontrib><creatorcontrib>Fan, Xiongwei</creatorcontrib><creatorcontrib>Wu, Xiushan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>American journal of physiology. Heart and circulatory physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Li</au><au>Xu, Wei</au><au>Li, Yongqing</au><au>Zhu, Ping</au><au>Yuan, Wuzhou</au><au>Liu, Ming</au><au>Shi, Yan</au><au>Chen, Yu</au><au>Liang, Jifeng</au><au>Chen, Jimei</au><au>Yang, Boyu</au><au>Cai, Wanwan</au><au>Wen, Yao</au><au>Zhu, Xiaolan</au><au>Peng, Xiyang</au><au>Zhou, Zuoqiong</au><au>Mo, Xiaoyang</au><au>Wan, Yongqi</au><au>Yuan, Haiyun</au><au>Li, Fang</au><au>Ye, Xiangli</au><au>Jiang, Zhigang</au><au>Wang, Yuequn</au><au>Zhuang, Jian</au><au>Fan, Xiongwei</au><au>Wu, Xiushan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pygo1 regulates pathological cardiac hypertrophy via a β-catenin-dependent mechanism</atitle><jtitle>American journal of physiology. Heart and circulatory physiology</jtitle><addtitle>Am J Physiol Heart Circ Physiol</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>320</volume><issue>4</issue><spage>H1634</spage><epage>H1645</epage><pages>H1634-H1645</pages><issn>0363-6135</issn><eissn>1522-1539</eissn><abstract>Wnt/β-catenin signaling plays a key role in pathological cardiac remodeling in adults. The identification of a tissue-specific Wnt/β-catenin interaction factor may provide a tissue-specific clinical targeting strategy.
encodes the core interaction factor of Wnt/β-catenin. Two
homologs (
and
) have been identified in mammals. Different from the ubiquitous expression profile of
,
is enriched in cardiac tissue. However, the role of
in mammalian cardiac disease is yet to be elucidated. In this study, we found that
was upregulated in human cardiac tissues with pathological hypertrophy. Cardiac-specific overexpression of
in mice spontaneously led to cardiac hypertrophy accompanied by declined cardiac function, increased heart weight/body weight and heart weight/tibial length ratios, and increased cell size. The canonical β-catenin/T-cell transcription factor 4 (TCF4) complex was abundant in
-overexpressing transgenic (
-TG) cardiac tissue, and the downstream genes of Wnt signaling, that is,
,
, and c-Myc, were upregulated. A tail vein injection of β-catenin inhibitor effectively rescued the phenotype of cardiac failure and pathological myocardial remodeling in
-TG mice. Furthermore, in vivo downregulated
during cardiac hypertrophic condition antagonized agonist-induced cardiac hypertrophy. Therefore, our study is the first to present in vivo evidence demonstrating that
regulates pathological cardiac hypertrophy in a canonical Wnt/β-catenin-dependent manner, which may provide new clues for tissue-specific clinical treatment via targeting this pathway.
In this study, we found that
is associated with human pathological hypertrophy. Cardiac-specific overexpression of
in mice spontaneously led to cardiac hypertrophy. Meanwhile, cardiac function was improved when expression of
was interfered in hypertrophy-model mice. Our study is the first to present in vivo evidence demonstrating that
regulates pathological cardiac hypertrophy in a canonical Wnt/β-catenin-dependent manner, which may provide new clues for a tissue-specific clinical treatment targeting this pathway.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>33635162</pmid><doi>10.1152/ajpheart.00538.2020</doi><orcidid>https://orcid.org/0000-0002-3278-3842</orcidid><orcidid>https://orcid.org/0000-0002-8884-4202</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-6135 |
ispartof | American journal of physiology. Heart and circulatory physiology, 2021-04, Vol.320 (4), p.H1634-H1645 |
issn | 0363-6135 1522-1539 |
language | eng |
recordid | cdi_proquest_journals_2518420307 |
source | MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Animals Axin Protein - genetics Axin Protein - metabolism beta Catenin - antagonists & inhibitors beta Catenin - metabolism Body weight c-Myc protein Cell size Coronary artery disease Disease Models, Animal Heart diseases Heart Failure - chemically induced Heart Failure - metabolism Heart Failure - pathology Heart Failure - prevention & control Homology Hypertrophy Hypertrophy, Left Ventricular - chemically induced Hypertrophy, Left Ventricular - drug therapy Hypertrophy, Left Ventricular - metabolism Hypertrophy, Left Ventricular - pathology In vivo methods and tests Isoproterenol Lymphocytes T Male Mammals Mice, Transgenic Myc protein Myocardium - metabolism Myocardium - pathology Phenotypes Proto-Oncogene Proteins c-myc - genetics Proto-Oncogene Proteins c-myc - metabolism Rats Receptor, EphB3 - genetics Receptor, EphB3 - metabolism Signaling Thiazolidines - pharmacology Tissues Transcription Factor 4 - genetics Transcription Factor 4 - metabolism Ventricular Function, Left - drug effects Ventricular Remodeling - drug effects Wnt protein Wnt Signaling Pathway - drug effects β-Catenin |
title | Pygo1 regulates pathological cardiac hypertrophy via a β-catenin-dependent mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pygo1%20regulates%20pathological%20cardiac%20hypertrophy%20via%20a%20%CE%B2-catenin-dependent%20mechanism&rft.jtitle=American%20journal%20of%20physiology.%20Heart%20and%20circulatory%20physiology&rft.au=Lin,%20Li&rft.date=2021-04-01&rft.volume=320&rft.issue=4&rft.spage=H1634&rft.epage=H1645&rft.pages=H1634-H1645&rft.issn=0363-6135&rft.eissn=1522-1539&rft_id=info:doi/10.1152/ajpheart.00538.2020&rft_dat=%3Cproquest_cross%3E2518420307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518420307&rft_id=info:pmid/33635162&rfr_iscdi=true |