Symmetry and control of spin-scattering processes in two-dimensional transition metal dichalcogenides

Transition metal dichalcogenides (TMDs) combine interesting optical and spintronic properties in an atomically thin material, where the light polarization can be used to control the spin and valley degrees of freedom for the development of novel optospintronic devices. These promising properties eme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2021-03, Vol.103 (11), p.1, Article 115410
Hauptverfasser: Gilardoni, Carmem M., Hendriks, Freddie, van der Wal, Caspar H., Guimarães, Marcos H. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1
container_title Physical review. B
container_volume 103
creator Gilardoni, Carmem M.
Hendriks, Freddie
van der Wal, Caspar H.
Guimarães, Marcos H. D.
description Transition metal dichalcogenides (TMDs) combine interesting optical and spintronic properties in an atomically thin material, where the light polarization can be used to control the spin and valley degrees of freedom for the development of novel optospintronic devices. These promising properties emerge due to their large spin-orbit coupling in combination with their crystal symmetries. Here, we provide simple symmetry arguments in a group-theory approach to unveil the symmetry-allowed spin-scattering mechanisms, and indicate how one can use these concepts towards an external control of the spin lifetime. We perform this analysis for both monolayer (inversion asymmetric) and bilayer (inversion symmetric) crystals, indicating the different mechanisms that play a role in these systems. We show that in monolayer TMDs, electrons and holes transform fundamentally differently––leading to distinct spin-scattering processes. We find that one of the electronic states in the conduction band is partially protected by time-reversal symmetry, indicating a longer spin lifetime for that state. In bilayer and bulk TMDs, a hidden spin polarization can exist within each layer despite the presence of global inversion symmetry. We show that this feature enables control of the interlayer spin-flipping scattering processes via an out-of-plane electric field, providing a mechanism for electrical control of the spin lifetime.
doi_str_mv 10.1103/PhysRevB.103.115410
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518415116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518415116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-d19d379c84d3fbdb999cb510d9904381a8723384616fc3ead10b3a434d053c0f3</originalsourceid><addsrcrecordid>eNo9UEtLAzEYDKJgqf0FXgKet37ZZB85avEFBcXHeckm2TZlN6lJquy_N2XV0zwYhmEQuiSwJATo9ct2DK_663aZRHIKRuAEzXJW8ozzkp_-8wLO0SKEHQCQEngFfIb02zgMOvoRC6uwdDZ612PX4bA3NgtSxKi9sRu8907qEHTAxuL47TJlBm2DcVb0OHqRaEwCp7JkKCO3opduo61ROlygs070QS9-cY4-7u_eV4_Z-vnhaXWzzmReVTFThCtacVkzRbtWtZxz2RYEFOfAaE1EXeWU1qwkZSepFopASwWjTEFBJXR0jq6m3rT286BDbHbu4NPC0OQFqRkpCClTik4p6V0IXnfN3ptB-LEh0Bwvbf4ubY5iupT-ABr-bSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518415116</pqid></control><display><type>article</type><title>Symmetry and control of spin-scattering processes in two-dimensional transition metal dichalcogenides</title><source>American Physical Society Journals</source><creator>Gilardoni, Carmem M. ; Hendriks, Freddie ; van der Wal, Caspar H. ; Guimarães, Marcos H. D.</creator><creatorcontrib>Gilardoni, Carmem M. ; Hendriks, Freddie ; van der Wal, Caspar H. ; Guimarães, Marcos H. D.</creatorcontrib><description>Transition metal dichalcogenides (TMDs) combine interesting optical and spintronic properties in an atomically thin material, where the light polarization can be used to control the spin and valley degrees of freedom for the development of novel optospintronic devices. These promising properties emerge due to their large spin-orbit coupling in combination with their crystal symmetries. Here, we provide simple symmetry arguments in a group-theory approach to unveil the symmetry-allowed spin-scattering mechanisms, and indicate how one can use these concepts towards an external control of the spin lifetime. We perform this analysis for both monolayer (inversion asymmetric) and bilayer (inversion symmetric) crystals, indicating the different mechanisms that play a role in these systems. We show that in monolayer TMDs, electrons and holes transform fundamentally differently––leading to distinct spin-scattering processes. We find that one of the electronic states in the conduction band is partially protected by time-reversal symmetry, indicating a longer spin lifetime for that state. In bilayer and bulk TMDs, a hidden spin polarization can exist within each layer despite the presence of global inversion symmetry. We show that this feature enables control of the interlayer spin-flipping scattering processes via an out-of-plane electric field, providing a mechanism for electrical control of the spin lifetime.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.103.115410</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Bilayers ; Chalcogenides ; Conduction bands ; Electric fields ; Electron states ; Interlayers ; Monolayers ; Optical properties ; Polarization (spin alignment) ; Scattering ; Spin-orbit interactions ; Symmetry ; Transition metal compounds</subject><ispartof>Physical review. B, 2021-03, Vol.103 (11), p.1, Article 115410</ispartof><rights>Copyright American Physical Society Mar 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-d19d379c84d3fbdb999cb510d9904381a8723384616fc3ead10b3a434d053c0f3</citedby><cites>FETCH-LOGICAL-c277t-d19d379c84d3fbdb999cb510d9904381a8723384616fc3ead10b3a434d053c0f3</cites><orcidid>0000-0002-8150-4379 ; 0000-0001-5318-3363 ; 0000-0003-4623-7524 ; 0000-0002-9843-3220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Gilardoni, Carmem M.</creatorcontrib><creatorcontrib>Hendriks, Freddie</creatorcontrib><creatorcontrib>van der Wal, Caspar H.</creatorcontrib><creatorcontrib>Guimarães, Marcos H. D.</creatorcontrib><title>Symmetry and control of spin-scattering processes in two-dimensional transition metal dichalcogenides</title><title>Physical review. B</title><description>Transition metal dichalcogenides (TMDs) combine interesting optical and spintronic properties in an atomically thin material, where the light polarization can be used to control the spin and valley degrees of freedom for the development of novel optospintronic devices. These promising properties emerge due to their large spin-orbit coupling in combination with their crystal symmetries. Here, we provide simple symmetry arguments in a group-theory approach to unveil the symmetry-allowed spin-scattering mechanisms, and indicate how one can use these concepts towards an external control of the spin lifetime. We perform this analysis for both monolayer (inversion asymmetric) and bilayer (inversion symmetric) crystals, indicating the different mechanisms that play a role in these systems. We show that in monolayer TMDs, electrons and holes transform fundamentally differently––leading to distinct spin-scattering processes. We find that one of the electronic states in the conduction band is partially protected by time-reversal symmetry, indicating a longer spin lifetime for that state. In bilayer and bulk TMDs, a hidden spin polarization can exist within each layer despite the presence of global inversion symmetry. We show that this feature enables control of the interlayer spin-flipping scattering processes via an out-of-plane electric field, providing a mechanism for electrical control of the spin lifetime.</description><subject>Bilayers</subject><subject>Chalcogenides</subject><subject>Conduction bands</subject><subject>Electric fields</subject><subject>Electron states</subject><subject>Interlayers</subject><subject>Monolayers</subject><subject>Optical properties</subject><subject>Polarization (spin alignment)</subject><subject>Scattering</subject><subject>Spin-orbit interactions</subject><subject>Symmetry</subject><subject>Transition metal compounds</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UEtLAzEYDKJgqf0FXgKet37ZZB85avEFBcXHeckm2TZlN6lJquy_N2XV0zwYhmEQuiSwJATo9ct2DK_663aZRHIKRuAEzXJW8ozzkp_-8wLO0SKEHQCQEngFfIb02zgMOvoRC6uwdDZ612PX4bA3NgtSxKi9sRu8907qEHTAxuL47TJlBm2DcVb0OHqRaEwCp7JkKCO3opduo61ROlygs070QS9-cY4-7u_eV4_Z-vnhaXWzzmReVTFThCtacVkzRbtWtZxz2RYEFOfAaE1EXeWU1qwkZSepFopASwWjTEFBJXR0jq6m3rT286BDbHbu4NPC0OQFqRkpCClTik4p6V0IXnfN3ptB-LEh0Bwvbf4ubY5iupT-ABr-bSA</recordid><startdate>20210305</startdate><enddate>20210305</enddate><creator>Gilardoni, Carmem M.</creator><creator>Hendriks, Freddie</creator><creator>van der Wal, Caspar H.</creator><creator>Guimarães, Marcos H. D.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8150-4379</orcidid><orcidid>https://orcid.org/0000-0001-5318-3363</orcidid><orcidid>https://orcid.org/0000-0003-4623-7524</orcidid><orcidid>https://orcid.org/0000-0002-9843-3220</orcidid></search><sort><creationdate>20210305</creationdate><title>Symmetry and control of spin-scattering processes in two-dimensional transition metal dichalcogenides</title><author>Gilardoni, Carmem M. ; Hendriks, Freddie ; van der Wal, Caspar H. ; Guimarães, Marcos H. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-d19d379c84d3fbdb999cb510d9904381a8723384616fc3ead10b3a434d053c0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bilayers</topic><topic>Chalcogenides</topic><topic>Conduction bands</topic><topic>Electric fields</topic><topic>Electron states</topic><topic>Interlayers</topic><topic>Monolayers</topic><topic>Optical properties</topic><topic>Polarization (spin alignment)</topic><topic>Scattering</topic><topic>Spin-orbit interactions</topic><topic>Symmetry</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilardoni, Carmem M.</creatorcontrib><creatorcontrib>Hendriks, Freddie</creatorcontrib><creatorcontrib>van der Wal, Caspar H.</creatorcontrib><creatorcontrib>Guimarães, Marcos H. D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilardoni, Carmem M.</au><au>Hendriks, Freddie</au><au>van der Wal, Caspar H.</au><au>Guimarães, Marcos H. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry and control of spin-scattering processes in two-dimensional transition metal dichalcogenides</atitle><jtitle>Physical review. B</jtitle><date>2021-03-05</date><risdate>2021</risdate><volume>103</volume><issue>11</issue><spage>1</spage><pages>1-</pages><artnum>115410</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Transition metal dichalcogenides (TMDs) combine interesting optical and spintronic properties in an atomically thin material, where the light polarization can be used to control the spin and valley degrees of freedom for the development of novel optospintronic devices. These promising properties emerge due to their large spin-orbit coupling in combination with their crystal symmetries. Here, we provide simple symmetry arguments in a group-theory approach to unveil the symmetry-allowed spin-scattering mechanisms, and indicate how one can use these concepts towards an external control of the spin lifetime. We perform this analysis for both monolayer (inversion asymmetric) and bilayer (inversion symmetric) crystals, indicating the different mechanisms that play a role in these systems. We show that in monolayer TMDs, electrons and holes transform fundamentally differently––leading to distinct spin-scattering processes. We find that one of the electronic states in the conduction band is partially protected by time-reversal symmetry, indicating a longer spin lifetime for that state. In bilayer and bulk TMDs, a hidden spin polarization can exist within each layer despite the presence of global inversion symmetry. We show that this feature enables control of the interlayer spin-flipping scattering processes via an out-of-plane electric field, providing a mechanism for electrical control of the spin lifetime.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.103.115410</doi><orcidid>https://orcid.org/0000-0002-8150-4379</orcidid><orcidid>https://orcid.org/0000-0001-5318-3363</orcidid><orcidid>https://orcid.org/0000-0003-4623-7524</orcidid><orcidid>https://orcid.org/0000-0002-9843-3220</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2021-03, Vol.103 (11), p.1, Article 115410
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2518415116
source American Physical Society Journals
subjects Bilayers
Chalcogenides
Conduction bands
Electric fields
Electron states
Interlayers
Monolayers
Optical properties
Polarization (spin alignment)
Scattering
Spin-orbit interactions
Symmetry
Transition metal compounds
title Symmetry and control of spin-scattering processes in two-dimensional transition metal dichalcogenides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20and%20control%20of%20spin-scattering%20processes%20in%20two-dimensional%20transition%20metal%20dichalcogenides&rft.jtitle=Physical%20review.%20B&rft.au=Gilardoni,%20Carmem%20M.&rft.date=2021-03-05&rft.volume=103&rft.issue=11&rft.spage=1&rft.pages=1-&rft.artnum=115410&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.103.115410&rft_dat=%3Cproquest_cross%3E2518415116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518415116&rft_id=info:pmid/&rfr_iscdi=true