Estimating and testing high dimensional factor models with multiple structural changes

This paper considers multiple changes in the factor loadings of a high dimensional factor model occurring at dates that are unknown but common to all subjects. Since the factors are unobservable, the problem is converted to estimating and testing structural changes in the second moments of the pseud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2021-02, Vol.220 (2), p.349-365
Hauptverfasser: Baltagi, Badi H., Kao, Chihwa, Wang, Fa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 365
container_issue 2
container_start_page 349
container_title Journal of econometrics
container_volume 220
creator Baltagi, Badi H.
Kao, Chihwa
Wang, Fa
description This paper considers multiple changes in the factor loadings of a high dimensional factor model occurring at dates that are unknown but common to all subjects. Since the factors are unobservable, the problem is converted to estimating and testing structural changes in the second moments of the pseudo factors. We consider both joint and sequential estimation of the change points and show that the distance between the estimated and the true change points is Op(1). We find that the estimation error contained in the estimated pseudo factors has no effect on the asymptotic properties of the estimated change points as the cross-sectional dimension N and the time dimension T go to infinity jointly. No N-T ratio condition is needed. We also propose (i) tests for no change versus l changes (ii) tests for l changes versus l+1 changes, and show that using estimated factors asymptotically has no effect on their limit distributions if T∕N→0. These tests allow us to make inference on the presence and number of structural changes. Simulation results show good performance of the proposed procedure. In an application to US quarterly macroeconomic data we detect two possible breaks.
doi_str_mv 10.1016/j.jeconom.2020.04.005
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2518414925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030440762030124X</els_id><sourcerecordid>2518414925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-9132c602bb60cc541668f61081c9fd6dfbfe38b49c1879d28668b07b2e4dead3</originalsourceid><addsrcrecordid>eNqNkNFK5DAUhoPsgrPuPsJCYS-l9SRNM-mVyKCrIHgj3oY2OZ1JaZPZJFV8e-PO4K1e5UC-__Cfj5DfFCoKVFyM1YjaOz9XDBhUwCuA5oSsqFyzUsi2-UZWUAMvOazFKfkR4wiZ4LJekafrmOzcJeu2RedMkTD-n3d2uyuMndFF6103FUOnkw_F7A1OsXixaVfMy5TsfsIiprDotISM6V3nthh_ku9DN0X8dXzPyOPN9ePmtrx_-Hu3ubovNedtKltaMy2A9b0ArRtOhZCDoCCpbgcjzNAPWMuetzrf0hom838P654hN9iZ-oz8OazdB_9vydXV6JeQ60bFGio55S1rMtUcKB18jAEHtQ_55vCqKKh3g2pUR4Pq3aACrrKfnJOH3Av2fojaotP4kc0KBWWM0jpPsN7YlC16t_GLSzl6_vVopi8PdFaLzxaDOiaMDaiTMt5-UvUNve6eWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518414925</pqid></control><display><type>article</type><title>Estimating and testing high dimensional factor models with multiple structural changes</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><source>Web of Science - Social Sciences Citation Index – 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Baltagi, Badi H. ; Kao, Chihwa ; Wang, Fa</creator><creatorcontrib>Baltagi, Badi H. ; Kao, Chihwa ; Wang, Fa</creatorcontrib><description>This paper considers multiple changes in the factor loadings of a high dimensional factor model occurring at dates that are unknown but common to all subjects. Since the factors are unobservable, the problem is converted to estimating and testing structural changes in the second moments of the pseudo factors. We consider both joint and sequential estimation of the change points and show that the distance between the estimated and the true change points is Op(1). We find that the estimation error contained in the estimated pseudo factors has no effect on the asymptotic properties of the estimated change points as the cross-sectional dimension N and the time dimension T go to infinity jointly. No N-T ratio condition is needed. We also propose (i) tests for no change versus l changes (ii) tests for l changes versus l+1 changes, and show that using estimated factors asymptotically has no effect on their limit distributions if T∕N→0. These tests allow us to make inference on the presence and number of structural changes. Simulation results show good performance of the proposed procedure. In an application to US quarterly macroeconomic data we detect two possible breaks.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2020.04.005</identifier><language>eng</language><publisher>LAUSANNE: Elsevier B.V</publisher><subject>Asymptotic methods ; Business &amp; Economics ; Change agents ; Economics ; Estimating techniques ; Factor model ; Macroeconomics ; Mathematical Methods In Social Sciences ; Mathematics ; Mathematics, Interdisciplinary Applications ; Model selection ; Multiple changes ; Panel data ; Physical Sciences ; Science &amp; Technology ; Simulation ; Social Sciences ; Social Sciences, Mathematical Methods</subject><ispartof>Journal of econometrics, 2021-02, Vol.220 (2), p.349-365</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Feb 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000612211300007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c449t-9132c602bb60cc541668f61081c9fd6dfbfe38b49c1879d28668b07b2e4dead3</citedby><cites>FETCH-LOGICAL-c449t-9132c602bb60cc541668f61081c9fd6dfbfe38b49c1879d28668b07b2e4dead3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2020.04.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,39261,39262,45999</link.rule.ids></links><search><creatorcontrib>Baltagi, Badi H.</creatorcontrib><creatorcontrib>Kao, Chihwa</creatorcontrib><creatorcontrib>Wang, Fa</creatorcontrib><title>Estimating and testing high dimensional factor models with multiple structural changes</title><title>Journal of econometrics</title><addtitle>J ECONOMETRICS</addtitle><description>This paper considers multiple changes in the factor loadings of a high dimensional factor model occurring at dates that are unknown but common to all subjects. Since the factors are unobservable, the problem is converted to estimating and testing structural changes in the second moments of the pseudo factors. We consider both joint and sequential estimation of the change points and show that the distance between the estimated and the true change points is Op(1). We find that the estimation error contained in the estimated pseudo factors has no effect on the asymptotic properties of the estimated change points as the cross-sectional dimension N and the time dimension T go to infinity jointly. No N-T ratio condition is needed. We also propose (i) tests for no change versus l changes (ii) tests for l changes versus l+1 changes, and show that using estimated factors asymptotically has no effect on their limit distributions if T∕N→0. These tests allow us to make inference on the presence and number of structural changes. Simulation results show good performance of the proposed procedure. In an application to US quarterly macroeconomic data we detect two possible breaks.</description><subject>Asymptotic methods</subject><subject>Business &amp; Economics</subject><subject>Change agents</subject><subject>Economics</subject><subject>Estimating techniques</subject><subject>Factor model</subject><subject>Macroeconomics</subject><subject>Mathematical Methods In Social Sciences</subject><subject>Mathematics</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>Model selection</subject><subject>Multiple changes</subject><subject>Panel data</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Simulation</subject><subject>Social Sciences</subject><subject>Social Sciences, Mathematical Methods</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkNFK5DAUhoPsgrPuPsJCYS-l9SRNM-mVyKCrIHgj3oY2OZ1JaZPZJFV8e-PO4K1e5UC-__Cfj5DfFCoKVFyM1YjaOz9XDBhUwCuA5oSsqFyzUsi2-UZWUAMvOazFKfkR4wiZ4LJekafrmOzcJeu2RedMkTD-n3d2uyuMndFF6103FUOnkw_F7A1OsXixaVfMy5TsfsIiprDotISM6V3nthh_ku9DN0X8dXzPyOPN9ePmtrx_-Hu3ubovNedtKltaMy2A9b0ArRtOhZCDoCCpbgcjzNAPWMuetzrf0hom838P654hN9iZ-oz8OazdB_9vydXV6JeQ60bFGio55S1rMtUcKB18jAEHtQ_55vCqKKh3g2pUR4Pq3aACrrKfnJOH3Av2fojaotP4kc0KBWWM0jpPsN7YlC16t_GLSzl6_vVopi8PdFaLzxaDOiaMDaiTMt5-UvUNve6eWA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Baltagi, Badi H.</creator><creator>Kao, Chihwa</creator><creator>Wang, Fa</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>17B</scope><scope>95M</scope><scope>AFQQP</scope><scope>AFTVD</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>JP4</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20210201</creationdate><title>Estimating and testing high dimensional factor models with multiple structural changes</title><author>Baltagi, Badi H. ; Kao, Chihwa ; Wang, Fa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-9132c602bb60cc541668f61081c9fd6dfbfe38b49c1879d28668b07b2e4dead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic methods</topic><topic>Business &amp; Economics</topic><topic>Change agents</topic><topic>Economics</topic><topic>Estimating techniques</topic><topic>Factor model</topic><topic>Macroeconomics</topic><topic>Mathematical Methods In Social Sciences</topic><topic>Mathematics</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>Model selection</topic><topic>Multiple changes</topic><topic>Panel data</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Simulation</topic><topic>Social Sciences</topic><topic>Social Sciences, Mathematical Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baltagi, Badi H.</creatorcontrib><creatorcontrib>Kao, Chihwa</creatorcontrib><creatorcontrib>Wang, Fa</creatorcontrib><collection>Web of Knowledge</collection><collection>Conference Proceedings Citation Index - Science (CPCI-S)</collection><collection>Conference Proceedings Citation Index - Social Science &amp; Humanities (CPCI-SSH) 2021</collection><collection>Conference Proceedings Citation Index - Science (CPCI-S) 2021</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Conference Proceedings Citation Index - Social Science &amp; Humanities (CPCI-SSH)</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baltagi, Badi H.</au><au>Kao, Chihwa</au><au>Wang, Fa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating and testing high dimensional factor models with multiple structural changes</atitle><jtitle>Journal of econometrics</jtitle><stitle>J ECONOMETRICS</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>220</volume><issue>2</issue><spage>349</spage><epage>365</epage><pages>349-365</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>This paper considers multiple changes in the factor loadings of a high dimensional factor model occurring at dates that are unknown but common to all subjects. Since the factors are unobservable, the problem is converted to estimating and testing structural changes in the second moments of the pseudo factors. We consider both joint and sequential estimation of the change points and show that the distance between the estimated and the true change points is Op(1). We find that the estimation error contained in the estimated pseudo factors has no effect on the asymptotic properties of the estimated change points as the cross-sectional dimension N and the time dimension T go to infinity jointly. No N-T ratio condition is needed. We also propose (i) tests for no change versus l changes (ii) tests for l changes versus l+1 changes, and show that using estimated factors asymptotically has no effect on their limit distributions if T∕N→0. These tests allow us to make inference on the presence and number of structural changes. Simulation results show good performance of the proposed procedure. In an application to US quarterly macroeconomic data we detect two possible breaks.</abstract><cop>LAUSANNE</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2020.04.005</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2021-02, Vol.220 (2), p.349-365
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_journals_2518414925
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier); Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Asymptotic methods
Business & Economics
Change agents
Economics
Estimating techniques
Factor model
Macroeconomics
Mathematical Methods In Social Sciences
Mathematics
Mathematics, Interdisciplinary Applications
Model selection
Multiple changes
Panel data
Physical Sciences
Science & Technology
Simulation
Social Sciences
Social Sciences, Mathematical Methods
title Estimating and testing high dimensional factor models with multiple structural changes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20and%20testing%20high%20dimensional%20factor%20models%20with%20multiple%20structural%20changes&rft.jtitle=Journal%20of%20econometrics&rft.au=Baltagi,%20Badi%20H.&rft.date=2021-02-01&rft.volume=220&rft.issue=2&rft.spage=349&rft.epage=365&rft.pages=349-365&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2020.04.005&rft_dat=%3Cproquest_webof%3E2518414925%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518414925&rft_id=info:pmid/&rft_els_id=S030440762030124X&rfr_iscdi=true