Estimating and testing high dimensional factor models with multiple structural changes
This paper considers multiple changes in the factor loadings of a high dimensional factor model occurring at dates that are unknown but common to all subjects. Since the factors are unobservable, the problem is converted to estimating and testing structural changes in the second moments of the pseud...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2021-02, Vol.220 (2), p.349-365 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 365 |
---|---|
container_issue | 2 |
container_start_page | 349 |
container_title | Journal of econometrics |
container_volume | 220 |
creator | Baltagi, Badi H. Kao, Chihwa Wang, Fa |
description | This paper considers multiple changes in the factor loadings of a high dimensional factor model occurring at dates that are unknown but common to all subjects. Since the factors are unobservable, the problem is converted to estimating and testing structural changes in the second moments of the pseudo factors. We consider both joint and sequential estimation of the change points and show that the distance between the estimated and the true change points is Op(1). We find that the estimation error contained in the estimated pseudo factors has no effect on the asymptotic properties of the estimated change points as the cross-sectional dimension N and the time dimension T go to infinity jointly. No N-T ratio condition is needed. We also propose (i) tests for no change versus l changes (ii) tests for l changes versus l+1 changes, and show that using estimated factors asymptotically has no effect on their limit distributions if T∕N→0. These tests allow us to make inference on the presence and number of structural changes. Simulation results show good performance of the proposed procedure. In an application to US quarterly macroeconomic data we detect two possible breaks. |
doi_str_mv | 10.1016/j.jeconom.2020.04.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2518414925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030440762030124X</els_id><sourcerecordid>2518414925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-9132c602bb60cc541668f61081c9fd6dfbfe38b49c1879d28668b07b2e4dead3</originalsourceid><addsrcrecordid>eNqNkNFK5DAUhoPsgrPuPsJCYS-l9SRNM-mVyKCrIHgj3oY2OZ1JaZPZJFV8e-PO4K1e5UC-__Cfj5DfFCoKVFyM1YjaOz9XDBhUwCuA5oSsqFyzUsi2-UZWUAMvOazFKfkR4wiZ4LJekafrmOzcJeu2RedMkTD-n3d2uyuMndFF6103FUOnkw_F7A1OsXixaVfMy5TsfsIiprDotISM6V3nthh_ku9DN0X8dXzPyOPN9ePmtrx_-Hu3ubovNedtKltaMy2A9b0ArRtOhZCDoCCpbgcjzNAPWMuetzrf0hom838P654hN9iZ-oz8OazdB_9vydXV6JeQ60bFGio55S1rMtUcKB18jAEHtQ_55vCqKKh3g2pUR4Pq3aACrrKfnJOH3Av2fojaotP4kc0KBWWM0jpPsN7YlC16t_GLSzl6_vVopi8PdFaLzxaDOiaMDaiTMt5-UvUNve6eWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518414925</pqid></control><display><type>article</type><title>Estimating and testing high dimensional factor models with multiple structural changes</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><source>Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Baltagi, Badi H. ; Kao, Chihwa ; Wang, Fa</creator><creatorcontrib>Baltagi, Badi H. ; Kao, Chihwa ; Wang, Fa</creatorcontrib><description>This paper considers multiple changes in the factor loadings of a high dimensional factor model occurring at dates that are unknown but common to all subjects. Since the factors are unobservable, the problem is converted to estimating and testing structural changes in the second moments of the pseudo factors. We consider both joint and sequential estimation of the change points and show that the distance between the estimated and the true change points is Op(1). We find that the estimation error contained in the estimated pseudo factors has no effect on the asymptotic properties of the estimated change points as the cross-sectional dimension N and the time dimension T go to infinity jointly. No N-T ratio condition is needed. We also propose (i) tests for no change versus l changes (ii) tests for l changes versus l+1 changes, and show that using estimated factors asymptotically has no effect on their limit distributions if T∕N→0. These tests allow us to make inference on the presence and number of structural changes. Simulation results show good performance of the proposed procedure. In an application to US quarterly macroeconomic data we detect two possible breaks.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2020.04.005</identifier><language>eng</language><publisher>LAUSANNE: Elsevier B.V</publisher><subject>Asymptotic methods ; Business & Economics ; Change agents ; Economics ; Estimating techniques ; Factor model ; Macroeconomics ; Mathematical Methods In Social Sciences ; Mathematics ; Mathematics, Interdisciplinary Applications ; Model selection ; Multiple changes ; Panel data ; Physical Sciences ; Science & Technology ; Simulation ; Social Sciences ; Social Sciences, Mathematical Methods</subject><ispartof>Journal of econometrics, 2021-02, Vol.220 (2), p.349-365</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Feb 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000612211300007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c449t-9132c602bb60cc541668f61081c9fd6dfbfe38b49c1879d28668b07b2e4dead3</citedby><cites>FETCH-LOGICAL-c449t-9132c602bb60cc541668f61081c9fd6dfbfe38b49c1879d28668b07b2e4dead3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2020.04.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,39261,39262,45999</link.rule.ids></links><search><creatorcontrib>Baltagi, Badi H.</creatorcontrib><creatorcontrib>Kao, Chihwa</creatorcontrib><creatorcontrib>Wang, Fa</creatorcontrib><title>Estimating and testing high dimensional factor models with multiple structural changes</title><title>Journal of econometrics</title><addtitle>J ECONOMETRICS</addtitle><description>This paper considers multiple changes in the factor loadings of a high dimensional factor model occurring at dates that are unknown but common to all subjects. Since the factors are unobservable, the problem is converted to estimating and testing structural changes in the second moments of the pseudo factors. We consider both joint and sequential estimation of the change points and show that the distance between the estimated and the true change points is Op(1). We find that the estimation error contained in the estimated pseudo factors has no effect on the asymptotic properties of the estimated change points as the cross-sectional dimension N and the time dimension T go to infinity jointly. No N-T ratio condition is needed. We also propose (i) tests for no change versus l changes (ii) tests for l changes versus l+1 changes, and show that using estimated factors asymptotically has no effect on their limit distributions if T∕N→0. These tests allow us to make inference on the presence and number of structural changes. Simulation results show good performance of the proposed procedure. In an application to US quarterly macroeconomic data we detect two possible breaks.</description><subject>Asymptotic methods</subject><subject>Business & Economics</subject><subject>Change agents</subject><subject>Economics</subject><subject>Estimating techniques</subject><subject>Factor model</subject><subject>Macroeconomics</subject><subject>Mathematical Methods In Social Sciences</subject><subject>Mathematics</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>Model selection</subject><subject>Multiple changes</subject><subject>Panel data</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>Simulation</subject><subject>Social Sciences</subject><subject>Social Sciences, Mathematical Methods</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkNFK5DAUhoPsgrPuPsJCYS-l9SRNM-mVyKCrIHgj3oY2OZ1JaZPZJFV8e-PO4K1e5UC-__Cfj5DfFCoKVFyM1YjaOz9XDBhUwCuA5oSsqFyzUsi2-UZWUAMvOazFKfkR4wiZ4LJekafrmOzcJeu2RedMkTD-n3d2uyuMndFF6103FUOnkw_F7A1OsXixaVfMy5TsfsIiprDotISM6V3nthh_ku9DN0X8dXzPyOPN9ePmtrx_-Hu3ubovNedtKltaMy2A9b0ArRtOhZCDoCCpbgcjzNAPWMuetzrf0hom838P654hN9iZ-oz8OazdB_9vydXV6JeQ60bFGio55S1rMtUcKB18jAEHtQ_55vCqKKh3g2pUR4Pq3aACrrKfnJOH3Av2fojaotP4kc0KBWWM0jpPsN7YlC16t_GLSzl6_vVopi8PdFaLzxaDOiaMDaiTMt5-UvUNve6eWA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Baltagi, Badi H.</creator><creator>Kao, Chihwa</creator><creator>Wang, Fa</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>17B</scope><scope>95M</scope><scope>AFQQP</scope><scope>AFTVD</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>JP4</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20210201</creationdate><title>Estimating and testing high dimensional factor models with multiple structural changes</title><author>Baltagi, Badi H. ; Kao, Chihwa ; Wang, Fa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-9132c602bb60cc541668f61081c9fd6dfbfe38b49c1879d28668b07b2e4dead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic methods</topic><topic>Business & Economics</topic><topic>Change agents</topic><topic>Economics</topic><topic>Estimating techniques</topic><topic>Factor model</topic><topic>Macroeconomics</topic><topic>Mathematical Methods In Social Sciences</topic><topic>Mathematics</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>Model selection</topic><topic>Multiple changes</topic><topic>Panel data</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>Simulation</topic><topic>Social Sciences</topic><topic>Social Sciences, Mathematical Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baltagi, Badi H.</creatorcontrib><creatorcontrib>Kao, Chihwa</creatorcontrib><creatorcontrib>Wang, Fa</creatorcontrib><collection>Web of Knowledge</collection><collection>Conference Proceedings Citation Index - Science (CPCI-S)</collection><collection>Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) 2021</collection><collection>Conference Proceedings Citation Index - Science (CPCI-S) 2021</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI & AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baltagi, Badi H.</au><au>Kao, Chihwa</au><au>Wang, Fa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating and testing high dimensional factor models with multiple structural changes</atitle><jtitle>Journal of econometrics</jtitle><stitle>J ECONOMETRICS</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>220</volume><issue>2</issue><spage>349</spage><epage>365</epage><pages>349-365</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>This paper considers multiple changes in the factor loadings of a high dimensional factor model occurring at dates that are unknown but common to all subjects. Since the factors are unobservable, the problem is converted to estimating and testing structural changes in the second moments of the pseudo factors. We consider both joint and sequential estimation of the change points and show that the distance between the estimated and the true change points is Op(1). We find that the estimation error contained in the estimated pseudo factors has no effect on the asymptotic properties of the estimated change points as the cross-sectional dimension N and the time dimension T go to infinity jointly. No N-T ratio condition is needed. We also propose (i) tests for no change versus l changes (ii) tests for l changes versus l+1 changes, and show that using estimated factors asymptotically has no effect on their limit distributions if T∕N→0. These tests allow us to make inference on the presence and number of structural changes. Simulation results show good performance of the proposed procedure. In an application to US quarterly macroeconomic data we detect two possible breaks.</abstract><cop>LAUSANNE</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2020.04.005</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2021-02, Vol.220 (2), p.349-365 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_journals_2518414925 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier); Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Asymptotic methods Business & Economics Change agents Economics Estimating techniques Factor model Macroeconomics Mathematical Methods In Social Sciences Mathematics Mathematics, Interdisciplinary Applications Model selection Multiple changes Panel data Physical Sciences Science & Technology Simulation Social Sciences Social Sciences, Mathematical Methods |
title | Estimating and testing high dimensional factor models with multiple structural changes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20and%20testing%20high%20dimensional%20factor%20models%20with%20multiple%20structural%20changes&rft.jtitle=Journal%20of%20econometrics&rft.au=Baltagi,%20Badi%20H.&rft.date=2021-02-01&rft.volume=220&rft.issue=2&rft.spage=349&rft.epage=365&rft.pages=349-365&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2020.04.005&rft_dat=%3Cproquest_webof%3E2518414925%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518414925&rft_id=info:pmid/&rft_els_id=S030440762030124X&rfr_iscdi=true |