Data Dimensionality Reduction for Data Mining: A Combined Filter-Wrapper Framework

Knowledge Discovery in Databases aims to extract new, interesting and potential useful patterns from large amounts of data. It is a complex process whose central point is data mining, which effectively builds models from data. Data type, quality and dimensionality are some factors which affect perfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computers, communications & control communications & control, 2012-12, Vol.7 (5), p.824
Hauptverfasser: Danubianu, Mirela, Pentiuc, Stefan Gheorghe, Danubianu, Dragos Mircea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 824
container_title International journal of computers, communications & control
container_volume 7
creator Danubianu, Mirela
Pentiuc, Stefan Gheorghe
Danubianu, Dragos Mircea
description Knowledge Discovery in Databases aims to extract new, interesting and potential useful patterns from large amounts of data. It is a complex process whose central point is data mining, which effectively builds models from data. Data type, quality and dimensionality are some factors which affect performance of data mining task. Since the high dimensionality of data can cause some troubles, as data overload, a possible solution could be its reduction. Sampling and filtering reduce the number of cases in a dataset, whereas features reduction can be achieved by feature selection. This paper aims to present a combined method for feature selection, where a filter based on correlation is applied on whole features set to find the relevant ones, and then, on these features a wrapper is applied in order to find the best features subset for a specified predictor. It is also presented a case study for a data set provided by TERAPERS a personalized speech therapy system.
doi_str_mv 10.15837/ijccc.2012.5.1337
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518386587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518386587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-dd2c00e4aae5dfd54b9296b7520c41560dabc431f0f357417b1d34fdc40828523</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWGr_gKuA6xnzOUndldZWoSIUxWXI5ENSO5MxmSL9905b8W3ee3C4cA8AtxiVmEsq7sPWGFMShEnJS0ypuAAjLBkuppKxy_-bVtdgkvMWDUOJRIKPwGahew0XoXFtDrHVu9Af4MbZvemHF_qY4Il4CW1oPx_gDM5jU4fWWbgMu96l4iPprnMJLpNu3E9MXzfgyutddpO_PQbvy8e3-VOxfl09z2frwhDB-8JaYhByTGvHrbec1VMyrWrBCTIM8wpZXRtGsUeecsGwqLGlzFvDkCSSEzoGd-fcLsXvvcu92sZ9GipkRTiWVFZcioEiZ8qkmHNyXnUpNDodFEbqpE-d9KmjPsXVUR_9BfLfYyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518386587</pqid></control><display><type>article</type><title>Data Dimensionality Reduction for Data Mining: A Combined Filter-Wrapper Framework</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Danubianu, Mirela ; Pentiuc, Stefan Gheorghe ; Danubianu, Dragos Mircea</creator><creatorcontrib>Danubianu, Mirela ; Pentiuc, Stefan Gheorghe ; Danubianu, Dragos Mircea</creatorcontrib><description>Knowledge Discovery in Databases aims to extract new, interesting and potential useful patterns from large amounts of data. It is a complex process whose central point is data mining, which effectively builds models from data. Data type, quality and dimensionality are some factors which affect performance of data mining task. Since the high dimensionality of data can cause some troubles, as data overload, a possible solution could be its reduction. Sampling and filtering reduce the number of cases in a dataset, whereas features reduction can be achieved by feature selection. This paper aims to present a combined method for feature selection, where a filter based on correlation is applied on whole features set to find the relevant ones, and then, on these features a wrapper is applied in order to find the best features subset for a specified predictor. It is also presented a case study for a data set provided by TERAPERS a personalized speech therapy system.</description><identifier>ISSN: 1841-9836</identifier><identifier>EISSN: 1841-9844</identifier><identifier>DOI: 10.15837/ijccc.2012.5.1337</identifier><language>eng</language><publisher>Oradea: Agora University of Oradea</publisher><subject>Data mining ; Feature selection ; Reduction</subject><ispartof>International journal of computers, communications &amp; control, 2012-12, Vol.7 (5), p.824</ispartof><rights>2012. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-dd2c00e4aae5dfd54b9296b7520c41560dabc431f0f357417b1d34fdc40828523</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Danubianu, Mirela</creatorcontrib><creatorcontrib>Pentiuc, Stefan Gheorghe</creatorcontrib><creatorcontrib>Danubianu, Dragos Mircea</creatorcontrib><title>Data Dimensionality Reduction for Data Mining: A Combined Filter-Wrapper Framework</title><title>International journal of computers, communications &amp; control</title><description>Knowledge Discovery in Databases aims to extract new, interesting and potential useful patterns from large amounts of data. It is a complex process whose central point is data mining, which effectively builds models from data. Data type, quality and dimensionality are some factors which affect performance of data mining task. Since the high dimensionality of data can cause some troubles, as data overload, a possible solution could be its reduction. Sampling and filtering reduce the number of cases in a dataset, whereas features reduction can be achieved by feature selection. This paper aims to present a combined method for feature selection, where a filter based on correlation is applied on whole features set to find the relevant ones, and then, on these features a wrapper is applied in order to find the best features subset for a specified predictor. It is also presented a case study for a data set provided by TERAPERS a personalized speech therapy system.</description><subject>Data mining</subject><subject>Feature selection</subject><subject>Reduction</subject><issn>1841-9836</issn><issn>1841-9844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kE1LAzEURYMoWGr_gKuA6xnzOUndldZWoSIUxWXI5ENSO5MxmSL9905b8W3ee3C4cA8AtxiVmEsq7sPWGFMShEnJS0ypuAAjLBkuppKxy_-bVtdgkvMWDUOJRIKPwGahew0XoXFtDrHVu9Af4MbZvemHF_qY4Il4CW1oPx_gDM5jU4fWWbgMu96l4iPprnMJLpNu3E9MXzfgyutddpO_PQbvy8e3-VOxfl09z2frwhDB-8JaYhByTGvHrbec1VMyrWrBCTIM8wpZXRtGsUeecsGwqLGlzFvDkCSSEzoGd-fcLsXvvcu92sZ9GipkRTiWVFZcioEiZ8qkmHNyXnUpNDodFEbqpE-d9KmjPsXVUR_9BfLfYyQ</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Danubianu, Mirela</creator><creator>Pentiuc, Stefan Gheorghe</creator><creator>Danubianu, Dragos Mircea</creator><general>Agora University of Oradea</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20121201</creationdate><title>Data Dimensionality Reduction for Data Mining: A Combined Filter-Wrapper Framework</title><author>Danubianu, Mirela ; Pentiuc, Stefan Gheorghe ; Danubianu, Dragos Mircea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-dd2c00e4aae5dfd54b9296b7520c41560dabc431f0f357417b1d34fdc40828523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Data mining</topic><topic>Feature selection</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danubianu, Mirela</creatorcontrib><creatorcontrib>Pentiuc, Stefan Gheorghe</creatorcontrib><creatorcontrib>Danubianu, Dragos Mircea</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of computers, communications &amp; control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danubianu, Mirela</au><au>Pentiuc, Stefan Gheorghe</au><au>Danubianu, Dragos Mircea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Dimensionality Reduction for Data Mining: A Combined Filter-Wrapper Framework</atitle><jtitle>International journal of computers, communications &amp; control</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>7</volume><issue>5</issue><spage>824</spage><pages>824-</pages><issn>1841-9836</issn><eissn>1841-9844</eissn><abstract>Knowledge Discovery in Databases aims to extract new, interesting and potential useful patterns from large amounts of data. It is a complex process whose central point is data mining, which effectively builds models from data. Data type, quality and dimensionality are some factors which affect performance of data mining task. Since the high dimensionality of data can cause some troubles, as data overload, a possible solution could be its reduction. Sampling and filtering reduce the number of cases in a dataset, whereas features reduction can be achieved by feature selection. This paper aims to present a combined method for feature selection, where a filter based on correlation is applied on whole features set to find the relevant ones, and then, on these features a wrapper is applied in order to find the best features subset for a specified predictor. It is also presented a case study for a data set provided by TERAPERS a personalized speech therapy system.</abstract><cop>Oradea</cop><pub>Agora University of Oradea</pub><doi>10.15837/ijccc.2012.5.1337</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1841-9836
ispartof International journal of computers, communications & control, 2012-12, Vol.7 (5), p.824
issn 1841-9836
1841-9844
language eng
recordid cdi_proquest_journals_2518386587
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Data mining
Feature selection
Reduction
title Data Dimensionality Reduction for Data Mining: A Combined Filter-Wrapper Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T08%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Dimensionality%20Reduction%20for%20Data%20Mining:%20A%20Combined%20Filter-Wrapper%20Framework&rft.jtitle=International%20journal%20of%20computers,%20communications%20&%20control&rft.au=Danubianu,%20Mirela&rft.date=2012-12-01&rft.volume=7&rft.issue=5&rft.spage=824&rft.pages=824-&rft.issn=1841-9836&rft.eissn=1841-9844&rft_id=info:doi/10.15837/ijccc.2012.5.1337&rft_dat=%3Cproquest_cross%3E2518386587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518386587&rft_id=info:pmid/&rfr_iscdi=true