Data Dimensionality Reduction for Data Mining: A Combined Filter-Wrapper Framework
Knowledge Discovery in Databases aims to extract new, interesting and potential useful patterns from large amounts of data. It is a complex process whose central point is data mining, which effectively builds models from data. Data type, quality and dimensionality are some factors which affect perfo...
Gespeichert in:
Veröffentlicht in: | International journal of computers, communications & control communications & control, 2012-12, Vol.7 (5), p.824 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 824 |
container_title | International journal of computers, communications & control |
container_volume | 7 |
creator | Danubianu, Mirela Pentiuc, Stefan Gheorghe Danubianu, Dragos Mircea |
description | Knowledge Discovery in Databases aims to extract new, interesting and potential useful patterns from large amounts of data. It is a complex process whose central point is data mining, which effectively builds models from data. Data type, quality and dimensionality are some factors which affect performance of data mining task. Since the high dimensionality of data can cause some troubles, as data overload, a possible solution could be its reduction. Sampling and filtering reduce the number of cases in a dataset, whereas features reduction can be achieved by feature selection. This paper aims to present a combined method for feature selection, where a filter based on correlation is applied on whole features set to find the relevant ones, and then, on these features a wrapper is applied in order to find the best features subset for a specified predictor. It is also presented a case study for a data set provided by TERAPERS a personalized speech therapy system. |
doi_str_mv | 10.15837/ijccc.2012.5.1337 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518386587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518386587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-dd2c00e4aae5dfd54b9296b7520c41560dabc431f0f357417b1d34fdc40828523</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWGr_gKuA6xnzOUndldZWoSIUxWXI5ENSO5MxmSL9905b8W3ee3C4cA8AtxiVmEsq7sPWGFMShEnJS0ypuAAjLBkuppKxy_-bVtdgkvMWDUOJRIKPwGahew0XoXFtDrHVu9Af4MbZvemHF_qY4Il4CW1oPx_gDM5jU4fWWbgMu96l4iPprnMJLpNu3E9MXzfgyutddpO_PQbvy8e3-VOxfl09z2frwhDB-8JaYhByTGvHrbec1VMyrWrBCTIM8wpZXRtGsUeecsGwqLGlzFvDkCSSEzoGd-fcLsXvvcu92sZ9GipkRTiWVFZcioEiZ8qkmHNyXnUpNDodFEbqpE-d9KmjPsXVUR_9BfLfYyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518386587</pqid></control><display><type>article</type><title>Data Dimensionality Reduction for Data Mining: A Combined Filter-Wrapper Framework</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Danubianu, Mirela ; Pentiuc, Stefan Gheorghe ; Danubianu, Dragos Mircea</creator><creatorcontrib>Danubianu, Mirela ; Pentiuc, Stefan Gheorghe ; Danubianu, Dragos Mircea</creatorcontrib><description>Knowledge Discovery in Databases aims to extract new, interesting and potential useful patterns from large amounts of data. It is a complex process whose central point is data mining, which effectively builds models from data. Data type, quality and dimensionality are some factors which affect performance of data mining task. Since the high dimensionality of data can cause some troubles, as data overload, a possible solution could be its reduction. Sampling and filtering reduce the number of cases in a dataset, whereas features reduction can be achieved by feature selection. This paper aims to present a combined method for feature selection, where a filter based on correlation is applied on whole features set to find the relevant ones, and then, on these features a wrapper is applied in order to find the best features subset for a specified predictor. It is also presented a case study for a data set provided by TERAPERS a personalized speech therapy system.</description><identifier>ISSN: 1841-9836</identifier><identifier>EISSN: 1841-9844</identifier><identifier>DOI: 10.15837/ijccc.2012.5.1337</identifier><language>eng</language><publisher>Oradea: Agora University of Oradea</publisher><subject>Data mining ; Feature selection ; Reduction</subject><ispartof>International journal of computers, communications & control, 2012-12, Vol.7 (5), p.824</ispartof><rights>2012. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-dd2c00e4aae5dfd54b9296b7520c41560dabc431f0f357417b1d34fdc40828523</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Danubianu, Mirela</creatorcontrib><creatorcontrib>Pentiuc, Stefan Gheorghe</creatorcontrib><creatorcontrib>Danubianu, Dragos Mircea</creatorcontrib><title>Data Dimensionality Reduction for Data Mining: A Combined Filter-Wrapper Framework</title><title>International journal of computers, communications & control</title><description>Knowledge Discovery in Databases aims to extract new, interesting and potential useful patterns from large amounts of data. It is a complex process whose central point is data mining, which effectively builds models from data. Data type, quality and dimensionality are some factors which affect performance of data mining task. Since the high dimensionality of data can cause some troubles, as data overload, a possible solution could be its reduction. Sampling and filtering reduce the number of cases in a dataset, whereas features reduction can be achieved by feature selection. This paper aims to present a combined method for feature selection, where a filter based on correlation is applied on whole features set to find the relevant ones, and then, on these features a wrapper is applied in order to find the best features subset for a specified predictor. It is also presented a case study for a data set provided by TERAPERS a personalized speech therapy system.</description><subject>Data mining</subject><subject>Feature selection</subject><subject>Reduction</subject><issn>1841-9836</issn><issn>1841-9844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kE1LAzEURYMoWGr_gKuA6xnzOUndldZWoSIUxWXI5ENSO5MxmSL9905b8W3ee3C4cA8AtxiVmEsq7sPWGFMShEnJS0ypuAAjLBkuppKxy_-bVtdgkvMWDUOJRIKPwGahew0XoXFtDrHVu9Af4MbZvemHF_qY4Il4CW1oPx_gDM5jU4fWWbgMu96l4iPprnMJLpNu3E9MXzfgyutddpO_PQbvy8e3-VOxfl09z2frwhDB-8JaYhByTGvHrbec1VMyrWrBCTIM8wpZXRtGsUeecsGwqLGlzFvDkCSSEzoGd-fcLsXvvcu92sZ9GipkRTiWVFZcioEiZ8qkmHNyXnUpNDodFEbqpE-d9KmjPsXVUR_9BfLfYyQ</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Danubianu, Mirela</creator><creator>Pentiuc, Stefan Gheorghe</creator><creator>Danubianu, Dragos Mircea</creator><general>Agora University of Oradea</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20121201</creationdate><title>Data Dimensionality Reduction for Data Mining: A Combined Filter-Wrapper Framework</title><author>Danubianu, Mirela ; Pentiuc, Stefan Gheorghe ; Danubianu, Dragos Mircea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-dd2c00e4aae5dfd54b9296b7520c41560dabc431f0f357417b1d34fdc40828523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Data mining</topic><topic>Feature selection</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danubianu, Mirela</creatorcontrib><creatorcontrib>Pentiuc, Stefan Gheorghe</creatorcontrib><creatorcontrib>Danubianu, Dragos Mircea</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of computers, communications & control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danubianu, Mirela</au><au>Pentiuc, Stefan Gheorghe</au><au>Danubianu, Dragos Mircea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Dimensionality Reduction for Data Mining: A Combined Filter-Wrapper Framework</atitle><jtitle>International journal of computers, communications & control</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>7</volume><issue>5</issue><spage>824</spage><pages>824-</pages><issn>1841-9836</issn><eissn>1841-9844</eissn><abstract>Knowledge Discovery in Databases aims to extract new, interesting and potential useful patterns from large amounts of data. It is a complex process whose central point is data mining, which effectively builds models from data. Data type, quality and dimensionality are some factors which affect performance of data mining task. Since the high dimensionality of data can cause some troubles, as data overload, a possible solution could be its reduction. Sampling and filtering reduce the number of cases in a dataset, whereas features reduction can be achieved by feature selection. This paper aims to present a combined method for feature selection, where a filter based on correlation is applied on whole features set to find the relevant ones, and then, on these features a wrapper is applied in order to find the best features subset for a specified predictor. It is also presented a case study for a data set provided by TERAPERS a personalized speech therapy system.</abstract><cop>Oradea</cop><pub>Agora University of Oradea</pub><doi>10.15837/ijccc.2012.5.1337</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1841-9836 |
ispartof | International journal of computers, communications & control, 2012-12, Vol.7 (5), p.824 |
issn | 1841-9836 1841-9844 |
language | eng |
recordid | cdi_proquest_journals_2518386587 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Data mining Feature selection Reduction |
title | Data Dimensionality Reduction for Data Mining: A Combined Filter-Wrapper Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T08%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Dimensionality%20Reduction%20for%20Data%20Mining:%20A%20Combined%20Filter-Wrapper%20Framework&rft.jtitle=International%20journal%20of%20computers,%20communications%20&%20control&rft.au=Danubianu,%20Mirela&rft.date=2012-12-01&rft.volume=7&rft.issue=5&rft.spage=824&rft.pages=824-&rft.issn=1841-9836&rft.eissn=1841-9844&rft_id=info:doi/10.15837/ijccc.2012.5.1337&rft_dat=%3Cproquest_cross%3E2518386587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518386587&rft_id=info:pmid/&rfr_iscdi=true |