Investigating bifurcation points of an impact oscillator
Investigating the dynamical properties of mechanical systems has been an attractive topic recently. In this paper, the dynamical properties of an impact oscillator are studied. The impact oscillator is a non-autonomous system with possible chaotic attractors. The oscillator without external force ha...
Gespeichert in:
Veröffentlicht in: | Indian journal of physics 2021-05, Vol.95 (5), p.925-933 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 933 |
---|---|
container_issue | 5 |
container_start_page | 925 |
container_title | Indian journal of physics |
container_volume | 95 |
creator | Jafari, S. Nazarimehr, F. Alsaadi, F. Z. Alsaadi, F. D. Pham, V. T. |
description | Investigating the dynamical properties of mechanical systems has been an attractive topic recently. In this paper, the dynamical properties of an impact oscillator are studied. The impact oscillator is a non-autonomous system with possible chaotic attractors. The oscillator without external force has a stable equilibrium. Bifurcation analysis of the system shows various dynamics by changing the frequency ratio of external force. In addition, plotting bifurcation diagrams with different methods indicates the system’s multistability. The bifurcation points of the system are studied. Prediction of bifurcation points is critical since it can cause unwanted qualitative changes in the dynamic of the system. Autocorrelation and Lyapunov exponent are used in the prediction of the bifurcation points of this system. |
doi_str_mv | 10.1007/s12648-020-01780-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518345459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518345459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-159d3e34a32158eafc890ede3d6075e8b1b42ba3ffccb520aecf7f30b66f6f3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrAdfTkNpMspXgpFFzoPmTSpKS0yZhMLb690RHcuTr_4r8cPoSuCdwSgO6uENpyiYECBtJJwMcTNAPVcawkF6c_mmHChTxHF6VsAVpFOjFDchk_XBnDxowhbpo--EO2VafYDCnEsTTJNyY2YT8YOzap2LDbmTHlS3Tmza64q987R6-PD2-LZ7x6eVou7lfYMqJGTIRaM8e4YZQI6Yy3UoFbO7ZuoRNO9qTntDfMe2t7QcE46zvPoG9b33o2RzdT65DT-6E-qrfpkGMd1FQQybjgQlUXnVw2p1Ky83rIYW_ypyagv_noiY-ufPQPH32sITaFSjXHjct_1f-kvgDRPGnm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518345459</pqid></control><display><type>article</type><title>Investigating bifurcation points of an impact oscillator</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jafari, S. ; Nazarimehr, F. ; Alsaadi, F. Z. ; Alsaadi, F. D. ; Pham, V. T.</creator><creatorcontrib>Jafari, S. ; Nazarimehr, F. ; Alsaadi, F. Z. ; Alsaadi, F. D. ; Pham, V. T.</creatorcontrib><description>Investigating the dynamical properties of mechanical systems has been an attractive topic recently. In this paper, the dynamical properties of an impact oscillator are studied. The impact oscillator is a non-autonomous system with possible chaotic attractors. The oscillator without external force has a stable equilibrium. Bifurcation analysis of the system shows various dynamics by changing the frequency ratio of external force. In addition, plotting bifurcation diagrams with different methods indicates the system’s multistability. The bifurcation points of the system are studied. Prediction of bifurcation points is critical since it can cause unwanted qualitative changes in the dynamic of the system. Autocorrelation and Lyapunov exponent are used in the prediction of the bifurcation points of this system.</description><identifier>ISSN: 0973-1458</identifier><identifier>EISSN: 0974-9845</identifier><identifier>DOI: 10.1007/s12648-020-01780-w</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astrophysics and Astroparticles ; Bifurcations ; Chaos theory ; Liapunov exponents ; Mechanical systems ; Original Paper ; Physics ; Physics and Astronomy</subject><ispartof>Indian journal of physics, 2021-05, Vol.95 (5), p.925-933</ispartof><rights>Indian Association for the Cultivation of Science 2020</rights><rights>Indian Association for the Cultivation of Science 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-159d3e34a32158eafc890ede3d6075e8b1b42ba3ffccb520aecf7f30b66f6f3</citedby><cites>FETCH-LOGICAL-c319t-159d3e34a32158eafc890ede3d6075e8b1b42ba3ffccb520aecf7f30b66f6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12648-020-01780-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12648-020-01780-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jafari, S.</creatorcontrib><creatorcontrib>Nazarimehr, F.</creatorcontrib><creatorcontrib>Alsaadi, F. Z.</creatorcontrib><creatorcontrib>Alsaadi, F. D.</creatorcontrib><creatorcontrib>Pham, V. T.</creatorcontrib><title>Investigating bifurcation points of an impact oscillator</title><title>Indian journal of physics</title><addtitle>Indian J Phys</addtitle><description>Investigating the dynamical properties of mechanical systems has been an attractive topic recently. In this paper, the dynamical properties of an impact oscillator are studied. The impact oscillator is a non-autonomous system with possible chaotic attractors. The oscillator without external force has a stable equilibrium. Bifurcation analysis of the system shows various dynamics by changing the frequency ratio of external force. In addition, plotting bifurcation diagrams with different methods indicates the system’s multistability. The bifurcation points of the system are studied. Prediction of bifurcation points is critical since it can cause unwanted qualitative changes in the dynamic of the system. Autocorrelation and Lyapunov exponent are used in the prediction of the bifurcation points of this system.</description><subject>Astrophysics and Astroparticles</subject><subject>Bifurcations</subject><subject>Chaos theory</subject><subject>Liapunov exponents</subject><subject>Mechanical systems</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0973-1458</issn><issn>0974-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4GrAdfTkNpMspXgpFFzoPmTSpKS0yZhMLb690RHcuTr_4r8cPoSuCdwSgO6uENpyiYECBtJJwMcTNAPVcawkF6c_mmHChTxHF6VsAVpFOjFDchk_XBnDxowhbpo--EO2VafYDCnEsTTJNyY2YT8YOzap2LDbmTHlS3Tmza64q987R6-PD2-LZ7x6eVou7lfYMqJGTIRaM8e4YZQI6Yy3UoFbO7ZuoRNO9qTntDfMe2t7QcE46zvPoG9b33o2RzdT65DT-6E-qrfpkGMd1FQQybjgQlUXnVw2p1Ky83rIYW_ypyagv_noiY-ufPQPH32sITaFSjXHjct_1f-kvgDRPGnm</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Jafari, S.</creator><creator>Nazarimehr, F.</creator><creator>Alsaadi, F. Z.</creator><creator>Alsaadi, F. D.</creator><creator>Pham, V. T.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210501</creationdate><title>Investigating bifurcation points of an impact oscillator</title><author>Jafari, S. ; Nazarimehr, F. ; Alsaadi, F. Z. ; Alsaadi, F. D. ; Pham, V. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-159d3e34a32158eafc890ede3d6075e8b1b42ba3ffccb520aecf7f30b66f6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Bifurcations</topic><topic>Chaos theory</topic><topic>Liapunov exponents</topic><topic>Mechanical systems</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jafari, S.</creatorcontrib><creatorcontrib>Nazarimehr, F.</creatorcontrib><creatorcontrib>Alsaadi, F. Z.</creatorcontrib><creatorcontrib>Alsaadi, F. D.</creatorcontrib><creatorcontrib>Pham, V. T.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Indian journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jafari, S.</au><au>Nazarimehr, F.</au><au>Alsaadi, F. Z.</au><au>Alsaadi, F. D.</au><au>Pham, V. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating bifurcation points of an impact oscillator</atitle><jtitle>Indian journal of physics</jtitle><stitle>Indian J Phys</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>95</volume><issue>5</issue><spage>925</spage><epage>933</epage><pages>925-933</pages><issn>0973-1458</issn><eissn>0974-9845</eissn><abstract>Investigating the dynamical properties of mechanical systems has been an attractive topic recently. In this paper, the dynamical properties of an impact oscillator are studied. The impact oscillator is a non-autonomous system with possible chaotic attractors. The oscillator without external force has a stable equilibrium. Bifurcation analysis of the system shows various dynamics by changing the frequency ratio of external force. In addition, plotting bifurcation diagrams with different methods indicates the system’s multistability. The bifurcation points of the system are studied. Prediction of bifurcation points is critical since it can cause unwanted qualitative changes in the dynamic of the system. Autocorrelation and Lyapunov exponent are used in the prediction of the bifurcation points of this system.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12648-020-01780-w</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0973-1458 |
ispartof | Indian journal of physics, 2021-05, Vol.95 (5), p.925-933 |
issn | 0973-1458 0974-9845 |
language | eng |
recordid | cdi_proquest_journals_2518345459 |
source | SpringerLink Journals - AutoHoldings |
subjects | Astrophysics and Astroparticles Bifurcations Chaos theory Liapunov exponents Mechanical systems Original Paper Physics Physics and Astronomy |
title | Investigating bifurcation points of an impact oscillator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20bifurcation%20points%20of%20an%20impact%20oscillator&rft.jtitle=Indian%20journal%20of%20physics&rft.au=Jafari,%20S.&rft.date=2021-05-01&rft.volume=95&rft.issue=5&rft.spage=925&rft.epage=933&rft.pages=925-933&rft.issn=0973-1458&rft.eissn=0974-9845&rft_id=info:doi/10.1007/s12648-020-01780-w&rft_dat=%3Cproquest_cross%3E2518345459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518345459&rft_id=info:pmid/&rfr_iscdi=true |