Investigating bifurcation points of an impact oscillator

Investigating the dynamical properties of mechanical systems has been an attractive topic recently. In this paper, the dynamical properties of an impact oscillator are studied. The impact oscillator is a non-autonomous system with possible chaotic attractors. The oscillator without external force ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of physics 2021-05, Vol.95 (5), p.925-933
Hauptverfasser: Jafari, S., Nazarimehr, F., Alsaadi, F. Z., Alsaadi, F. D., Pham, V. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 933
container_issue 5
container_start_page 925
container_title Indian journal of physics
container_volume 95
creator Jafari, S.
Nazarimehr, F.
Alsaadi, F. Z.
Alsaadi, F. D.
Pham, V. T.
description Investigating the dynamical properties of mechanical systems has been an attractive topic recently. In this paper, the dynamical properties of an impact oscillator are studied. The impact oscillator is a non-autonomous system with possible chaotic attractors. The oscillator without external force has a stable equilibrium. Bifurcation analysis of the system shows various dynamics by changing the frequency ratio of external force. In addition, plotting bifurcation diagrams with different methods indicates the system’s multistability. The bifurcation points of the system are studied. Prediction of bifurcation points is critical since it can cause unwanted qualitative changes in the dynamic of the system. Autocorrelation and Lyapunov exponent are used in the prediction of the bifurcation points of this system.
doi_str_mv 10.1007/s12648-020-01780-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518345459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518345459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-159d3e34a32158eafc890ede3d6075e8b1b42ba3ffccb520aecf7f30b66f6f3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrAdfTkNpMspXgpFFzoPmTSpKS0yZhMLb690RHcuTr_4r8cPoSuCdwSgO6uENpyiYECBtJJwMcTNAPVcawkF6c_mmHChTxHF6VsAVpFOjFDchk_XBnDxowhbpo--EO2VafYDCnEsTTJNyY2YT8YOzap2LDbmTHlS3Tmza64q987R6-PD2-LZ7x6eVou7lfYMqJGTIRaM8e4YZQI6Yy3UoFbO7ZuoRNO9qTntDfMe2t7QcE46zvPoG9b33o2RzdT65DT-6E-qrfpkGMd1FQQybjgQlUXnVw2p1Ky83rIYW_ypyagv_noiY-ufPQPH32sITaFSjXHjct_1f-kvgDRPGnm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518345459</pqid></control><display><type>article</type><title>Investigating bifurcation points of an impact oscillator</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jafari, S. ; Nazarimehr, F. ; Alsaadi, F. Z. ; Alsaadi, F. D. ; Pham, V. T.</creator><creatorcontrib>Jafari, S. ; Nazarimehr, F. ; Alsaadi, F. Z. ; Alsaadi, F. D. ; Pham, V. T.</creatorcontrib><description>Investigating the dynamical properties of mechanical systems has been an attractive topic recently. In this paper, the dynamical properties of an impact oscillator are studied. The impact oscillator is a non-autonomous system with possible chaotic attractors. The oscillator without external force has a stable equilibrium. Bifurcation analysis of the system shows various dynamics by changing the frequency ratio of external force. In addition, plotting bifurcation diagrams with different methods indicates the system’s multistability. The bifurcation points of the system are studied. Prediction of bifurcation points is critical since it can cause unwanted qualitative changes in the dynamic of the system. Autocorrelation and Lyapunov exponent are used in the prediction of the bifurcation points of this system.</description><identifier>ISSN: 0973-1458</identifier><identifier>EISSN: 0974-9845</identifier><identifier>DOI: 10.1007/s12648-020-01780-w</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astrophysics and Astroparticles ; Bifurcations ; Chaos theory ; Liapunov exponents ; Mechanical systems ; Original Paper ; Physics ; Physics and Astronomy</subject><ispartof>Indian journal of physics, 2021-05, Vol.95 (5), p.925-933</ispartof><rights>Indian Association for the Cultivation of Science 2020</rights><rights>Indian Association for the Cultivation of Science 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-159d3e34a32158eafc890ede3d6075e8b1b42ba3ffccb520aecf7f30b66f6f3</citedby><cites>FETCH-LOGICAL-c319t-159d3e34a32158eafc890ede3d6075e8b1b42ba3ffccb520aecf7f30b66f6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12648-020-01780-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12648-020-01780-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jafari, S.</creatorcontrib><creatorcontrib>Nazarimehr, F.</creatorcontrib><creatorcontrib>Alsaadi, F. Z.</creatorcontrib><creatorcontrib>Alsaadi, F. D.</creatorcontrib><creatorcontrib>Pham, V. T.</creatorcontrib><title>Investigating bifurcation points of an impact oscillator</title><title>Indian journal of physics</title><addtitle>Indian J Phys</addtitle><description>Investigating the dynamical properties of mechanical systems has been an attractive topic recently. In this paper, the dynamical properties of an impact oscillator are studied. The impact oscillator is a non-autonomous system with possible chaotic attractors. The oscillator without external force has a stable equilibrium. Bifurcation analysis of the system shows various dynamics by changing the frequency ratio of external force. In addition, plotting bifurcation diagrams with different methods indicates the system’s multistability. The bifurcation points of the system are studied. Prediction of bifurcation points is critical since it can cause unwanted qualitative changes in the dynamic of the system. Autocorrelation and Lyapunov exponent are used in the prediction of the bifurcation points of this system.</description><subject>Astrophysics and Astroparticles</subject><subject>Bifurcations</subject><subject>Chaos theory</subject><subject>Liapunov exponents</subject><subject>Mechanical systems</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0973-1458</issn><issn>0974-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4GrAdfTkNpMspXgpFFzoPmTSpKS0yZhMLb690RHcuTr_4r8cPoSuCdwSgO6uENpyiYECBtJJwMcTNAPVcawkF6c_mmHChTxHF6VsAVpFOjFDchk_XBnDxowhbpo--EO2VafYDCnEsTTJNyY2YT8YOzap2LDbmTHlS3Tmza64q987R6-PD2-LZ7x6eVou7lfYMqJGTIRaM8e4YZQI6Yy3UoFbO7ZuoRNO9qTntDfMe2t7QcE46zvPoG9b33o2RzdT65DT-6E-qrfpkGMd1FQQybjgQlUXnVw2p1Ky83rIYW_ypyagv_noiY-ufPQPH32sITaFSjXHjct_1f-kvgDRPGnm</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Jafari, S.</creator><creator>Nazarimehr, F.</creator><creator>Alsaadi, F. Z.</creator><creator>Alsaadi, F. D.</creator><creator>Pham, V. T.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210501</creationdate><title>Investigating bifurcation points of an impact oscillator</title><author>Jafari, S. ; Nazarimehr, F. ; Alsaadi, F. Z. ; Alsaadi, F. D. ; Pham, V. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-159d3e34a32158eafc890ede3d6075e8b1b42ba3ffccb520aecf7f30b66f6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Bifurcations</topic><topic>Chaos theory</topic><topic>Liapunov exponents</topic><topic>Mechanical systems</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jafari, S.</creatorcontrib><creatorcontrib>Nazarimehr, F.</creatorcontrib><creatorcontrib>Alsaadi, F. Z.</creatorcontrib><creatorcontrib>Alsaadi, F. D.</creatorcontrib><creatorcontrib>Pham, V. T.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Indian journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jafari, S.</au><au>Nazarimehr, F.</au><au>Alsaadi, F. Z.</au><au>Alsaadi, F. D.</au><au>Pham, V. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating bifurcation points of an impact oscillator</atitle><jtitle>Indian journal of physics</jtitle><stitle>Indian J Phys</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>95</volume><issue>5</issue><spage>925</spage><epage>933</epage><pages>925-933</pages><issn>0973-1458</issn><eissn>0974-9845</eissn><abstract>Investigating the dynamical properties of mechanical systems has been an attractive topic recently. In this paper, the dynamical properties of an impact oscillator are studied. The impact oscillator is a non-autonomous system with possible chaotic attractors. The oscillator without external force has a stable equilibrium. Bifurcation analysis of the system shows various dynamics by changing the frequency ratio of external force. In addition, plotting bifurcation diagrams with different methods indicates the system’s multistability. The bifurcation points of the system are studied. Prediction of bifurcation points is critical since it can cause unwanted qualitative changes in the dynamic of the system. Autocorrelation and Lyapunov exponent are used in the prediction of the bifurcation points of this system.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12648-020-01780-w</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0973-1458
ispartof Indian journal of physics, 2021-05, Vol.95 (5), p.925-933
issn 0973-1458
0974-9845
language eng
recordid cdi_proquest_journals_2518345459
source SpringerLink Journals - AutoHoldings
subjects Astrophysics and Astroparticles
Bifurcations
Chaos theory
Liapunov exponents
Mechanical systems
Original Paper
Physics
Physics and Astronomy
title Investigating bifurcation points of an impact oscillator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20bifurcation%20points%20of%20an%20impact%20oscillator&rft.jtitle=Indian%20journal%20of%20physics&rft.au=Jafari,%20S.&rft.date=2021-05-01&rft.volume=95&rft.issue=5&rft.spage=925&rft.epage=933&rft.pages=925-933&rft.issn=0973-1458&rft.eissn=0974-9845&rft_id=info:doi/10.1007/s12648-020-01780-w&rft_dat=%3Cproquest_cross%3E2518345459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518345459&rft_id=info:pmid/&rfr_iscdi=true