A Latent-Dirichlet-Allocation Based Extension for Domain Ontology of Enterprise’s Technological Innovation
This paper proposed a method for building enterprise's technological innovation domain ontology automatically from plain text corpus based on Latent Dirichlet Allocation (LDA). The proposed method consisted of four modules: 1) introducing the seed ontology for domain of enterprise's techno...
Gespeichert in:
Veröffentlicht in: | International Journal of Computers Communications & Control 2019-02, Vol.14 (1), p.107-123 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123 |
---|---|
container_issue | 1 |
container_start_page | 107 |
container_title | International Journal of Computers Communications & Control |
container_volume | 14 |
creator | Zhang, Qianqian Liu, Shifeng Gong, Daqing Tu, Qun |
description | This paper proposed a method for building enterprise's technological innovation domain ontology automatically from plain text corpus based on Latent Dirichlet Allocation (LDA). The proposed method consisted of four modules: 1) introducing the seed ontology for domain of enterprise's technological innovation, 2) using Natural Language Processing (NLP) technique to preprocess the collected textual data, 3) mining domain specific terms from document collections based on LDA, 4) obtaining the relationship between the terms through the defined relevant rules. The experiments have been carried out to demonstrate the effectiveness of this method and the results indicated that many terms in domain of enterprise's technological innovation and the semantic relations between terms are discovered. The proposed method is a process of continuously cycles and iterations, that is the obtained objective ontology can be re-iterated as initial seed ontology. The constant knowledge acquisition in the domain of enterprise's technological innovation to update and perfect the initial seed ontology. |
doi_str_mv | 10.15837/ijccc.2019.1.3366 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2518342779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518342779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-2aeab8c1c3218be5fbdb9b951bb51b572bee69b548ddd3ae61dd42bc7453bb5d3</originalsourceid><addsrcrecordid>eNpNkL1OwzAQgC0EEhX0BZgsMSfEdpw4Y2kLVKrUpcyW_0JdpXaxXUQ3XoPX40lIWgaG093pPt3pPgDuUJEjykj9YLdKqRwXqMlRTkhVXYARYiXKGkaqy3_1NRjHaGVBMCloxeoR6CZwKZJxKZvZYNWmMymbdJ1XIlnv4KOIRsP5Z0_EoW99gDO_E9bBlUu-829H6Fs4d8mEfbDR_Hx9R7g2auOGoVWigwvn_Mdp3S24akUXzfgv34DXp_l6-pItV8-L6WSZKVzTlGFhhGQKKYIRk4a2UstGNhRJ2QetsTSmaiQtmdaaCFMhrUssVV1S0iOa3ID789598O8HExPf-kNw_UmOKWKkxHXd9BQ-Uyr4GINpef_BToQjRwU_ieUnsXwQyxEfxJJfvOdwVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518342779</pqid></control><display><type>article</type><title>A Latent-Dirichlet-Allocation Based Extension for Domain Ontology of Enterprise’s Technological Innovation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Qianqian ; Liu, Shifeng ; Gong, Daqing ; Tu, Qun</creator><creatorcontrib>Zhang, Qianqian ; Liu, Shifeng ; Gong, Daqing ; Tu, Qun</creatorcontrib><description>This paper proposed a method for building enterprise's technological innovation domain ontology automatically from plain text corpus based on Latent Dirichlet Allocation (LDA). The proposed method consisted of four modules: 1) introducing the seed ontology for domain of enterprise's technological innovation, 2) using Natural Language Processing (NLP) technique to preprocess the collected textual data, 3) mining domain specific terms from document collections based on LDA, 4) obtaining the relationship between the terms through the defined relevant rules. The experiments have been carried out to demonstrate the effectiveness of this method and the results indicated that many terms in domain of enterprise's technological innovation and the semantic relations between terms are discovered. The proposed method is a process of continuously cycles and iterations, that is the obtained objective ontology can be re-iterated as initial seed ontology. The constant knowledge acquisition in the domain of enterprise's technological innovation to update and perfect the initial seed ontology.</description><identifier>ISSN: 1841-9836</identifier><identifier>EISSN: 1841-9836</identifier><identifier>EISSN: 1841-9844</identifier><identifier>DOI: 10.15837/ijccc.2019.1.3366</identifier><language>eng</language><publisher>Oradea: Agora University of Oradea</publisher><subject>Dirichlet problem ; Innovations ; Knowledge acquisition ; Natural language processing ; Ontology ; Technological change</subject><ispartof>International Journal of Computers Communications & Control, 2019-02, Vol.14 (1), p.107-123</ispartof><rights>2019. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-2aeab8c1c3218be5fbdb9b951bb51b572bee69b548ddd3ae61dd42bc7453bb5d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Liu, Shifeng</creatorcontrib><creatorcontrib>Gong, Daqing</creatorcontrib><creatorcontrib>Tu, Qun</creatorcontrib><title>A Latent-Dirichlet-Allocation Based Extension for Domain Ontology of Enterprise’s Technological Innovation</title><title>International Journal of Computers Communications & Control</title><description>This paper proposed a method for building enterprise's technological innovation domain ontology automatically from plain text corpus based on Latent Dirichlet Allocation (LDA). The proposed method consisted of four modules: 1) introducing the seed ontology for domain of enterprise's technological innovation, 2) using Natural Language Processing (NLP) technique to preprocess the collected textual data, 3) mining domain specific terms from document collections based on LDA, 4) obtaining the relationship between the terms through the defined relevant rules. The experiments have been carried out to demonstrate the effectiveness of this method and the results indicated that many terms in domain of enterprise's technological innovation and the semantic relations between terms are discovered. The proposed method is a process of continuously cycles and iterations, that is the obtained objective ontology can be re-iterated as initial seed ontology. The constant knowledge acquisition in the domain of enterprise's technological innovation to update and perfect the initial seed ontology.</description><subject>Dirichlet problem</subject><subject>Innovations</subject><subject>Knowledge acquisition</subject><subject>Natural language processing</subject><subject>Ontology</subject><subject>Technological change</subject><issn>1841-9836</issn><issn>1841-9836</issn><issn>1841-9844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkL1OwzAQgC0EEhX0BZgsMSfEdpw4Y2kLVKrUpcyW_0JdpXaxXUQ3XoPX40lIWgaG093pPt3pPgDuUJEjykj9YLdKqRwXqMlRTkhVXYARYiXKGkaqy3_1NRjHaGVBMCloxeoR6CZwKZJxKZvZYNWmMymbdJ1XIlnv4KOIRsP5Z0_EoW99gDO_E9bBlUu-829H6Fs4d8mEfbDR_Hx9R7g2auOGoVWigwvn_Mdp3S24akUXzfgv34DXp_l6-pItV8-L6WSZKVzTlGFhhGQKKYIRk4a2UstGNhRJ2QetsTSmaiQtmdaaCFMhrUssVV1S0iOa3ID789598O8HExPf-kNw_UmOKWKkxHXd9BQ-Uyr4GINpef_BToQjRwU_ieUnsXwQyxEfxJJfvOdwVw</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Zhang, Qianqian</creator><creator>Liu, Shifeng</creator><creator>Gong, Daqing</creator><creator>Tu, Qun</creator><general>Agora University of Oradea</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190201</creationdate><title>A Latent-Dirichlet-Allocation Based Extension for Domain Ontology of Enterprise’s Technological Innovation</title><author>Zhang, Qianqian ; Liu, Shifeng ; Gong, Daqing ; Tu, Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-2aeab8c1c3218be5fbdb9b951bb51b572bee69b548ddd3ae61dd42bc7453bb5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Dirichlet problem</topic><topic>Innovations</topic><topic>Knowledge acquisition</topic><topic>Natural language processing</topic><topic>Ontology</topic><topic>Technological change</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Liu, Shifeng</creatorcontrib><creatorcontrib>Gong, Daqing</creatorcontrib><creatorcontrib>Tu, Qun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International Journal of Computers Communications & Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qianqian</au><au>Liu, Shifeng</au><au>Gong, Daqing</au><au>Tu, Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Latent-Dirichlet-Allocation Based Extension for Domain Ontology of Enterprise’s Technological Innovation</atitle><jtitle>International Journal of Computers Communications & Control</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>14</volume><issue>1</issue><spage>107</spage><epage>123</epage><pages>107-123</pages><issn>1841-9836</issn><eissn>1841-9836</eissn><eissn>1841-9844</eissn><abstract>This paper proposed a method for building enterprise's technological innovation domain ontology automatically from plain text corpus based on Latent Dirichlet Allocation (LDA). The proposed method consisted of four modules: 1) introducing the seed ontology for domain of enterprise's technological innovation, 2) using Natural Language Processing (NLP) technique to preprocess the collected textual data, 3) mining domain specific terms from document collections based on LDA, 4) obtaining the relationship between the terms through the defined relevant rules. The experiments have been carried out to demonstrate the effectiveness of this method and the results indicated that many terms in domain of enterprise's technological innovation and the semantic relations between terms are discovered. The proposed method is a process of continuously cycles and iterations, that is the obtained objective ontology can be re-iterated as initial seed ontology. The constant knowledge acquisition in the domain of enterprise's technological innovation to update and perfect the initial seed ontology.</abstract><cop>Oradea</cop><pub>Agora University of Oradea</pub><doi>10.15837/ijccc.2019.1.3366</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1841-9836 |
ispartof | International Journal of Computers Communications & Control, 2019-02, Vol.14 (1), p.107-123 |
issn | 1841-9836 1841-9836 1841-9844 |
language | eng |
recordid | cdi_proquest_journals_2518342779 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Dirichlet problem Innovations Knowledge acquisition Natural language processing Ontology Technological change |
title | A Latent-Dirichlet-Allocation Based Extension for Domain Ontology of Enterprise’s Technological Innovation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Latent-Dirichlet-Allocation%20Based%20Extension%20for%20Domain%20Ontology%20of%20Enterprise%E2%80%99s%20Technological%20Innovation&rft.jtitle=International%20Journal%20of%20Computers%20Communications%20&%20Control&rft.au=Zhang,%20Qianqian&rft.date=2019-02-01&rft.volume=14&rft.issue=1&rft.spage=107&rft.epage=123&rft.pages=107-123&rft.issn=1841-9836&rft.eissn=1841-9836&rft_id=info:doi/10.15837/ijccc.2019.1.3366&rft_dat=%3Cproquest_cross%3E2518342779%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518342779&rft_id=info:pmid/&rfr_iscdi=true |