A comprehensive review of modern trends in optimization techniques applied to hybrid microgrid systems

Microgrids have drawn substantial consideration due to high quality and reliable mix sources of electricity. This paper articulates the implication of innovative algorithms for cognitive microgrid. It perceived the algorithms that are backed by artificial intelligence (AI) are quite efficient due to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2021-05, Vol.33 (10), p.n/a
Hauptverfasser: Arfeen, Zeeshan Ahmad, Sheikh, Usman Ullah, Azam, Mehreen Kausar, Hassan, Rabia, Faisal Shehzad, Hafiz Muhammad, Ashraf, Shahzad, Abdullah, Md Pauzi, Aziz, Lubna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Concurrency and computation
container_volume 33
creator Arfeen, Zeeshan Ahmad
Sheikh, Usman Ullah
Azam, Mehreen Kausar
Hassan, Rabia
Faisal Shehzad, Hafiz Muhammad
Ashraf, Shahzad
Abdullah, Md Pauzi
Aziz, Lubna
description Microgrids have drawn substantial consideration due to high quality and reliable mix sources of electricity. This paper articulates the implication of innovative algorithms for cognitive microgrid. It perceived the algorithms that are backed by artificial intelligence (AI) are quite efficient due to the precision, convergence speed, and less computation time as compared to the conventional heuristic methods. Solar PV/Battery grid‐connected MG is modeled to achieve optimum size, supreme power quality, reduced fluctuations in voltage and frequency, reduced settling time, eliminate short transient currents, seamless power, least annual cost and high reliability as an objective function under wavering weather condition and dynamic load changes. Four broad categorizations of metaheuristic algorithms, that is, evolutionary, swarm intelligence, physics, and human intelligence‐based algorithms are well elaborated in this study. The optimal solution to the fitness function by using a hybrid optimization method also directed in the study. This paper gives deep insight to readers working in the area.
doi_str_mv 10.1002/cpe.6165
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2517794130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2517794130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3415-97cb5435e9449af3485af49d91c624e6977a0f1692171d2521ba09ea7eb9aa803</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFbBn7DgxUvqzn4k3WMp9QMKetDzskkmdkuTjbtpJf56EyvePM3L8DDz8hByDWwGjPG7osVZCqk6IRNQgicsFfL0L_P0nFzEuGUMgAmYkGpBC1-3ATfYRHdAGvDg8JP6ita-xNDQLmBTRuoa6tvO1e7Lds4Payw2jfvYY6S2bXcOS9p5uunz4EpauyL49zHFPnZYx0tyVtldxKvfOSVv96vX5WOyfn54Wi7WSSEkqERnRa6kUKil1LYScq5sJXWpoUi5xFRnmWUVpJpDBiVXHHLLNNoMc23tnIkpuTnebYMfu3Vm6_ehGV4ariDLtAQxUrdHamgZY8DKtMHVNvQGmBktmsGiGS0OaHJEP90O-385s3xZ_fDfmX50Cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517794130</pqid></control><display><type>article</type><title>A comprehensive review of modern trends in optimization techniques applied to hybrid microgrid systems</title><source>Access via Wiley Online Library</source><creator>Arfeen, Zeeshan Ahmad ; Sheikh, Usman Ullah ; Azam, Mehreen Kausar ; Hassan, Rabia ; Faisal Shehzad, Hafiz Muhammad ; Ashraf, Shahzad ; Abdullah, Md Pauzi ; Aziz, Lubna</creator><creatorcontrib>Arfeen, Zeeshan Ahmad ; Sheikh, Usman Ullah ; Azam, Mehreen Kausar ; Hassan, Rabia ; Faisal Shehzad, Hafiz Muhammad ; Ashraf, Shahzad ; Abdullah, Md Pauzi ; Aziz, Lubna</creatorcontrib><description>Microgrids have drawn substantial consideration due to high quality and reliable mix sources of electricity. This paper articulates the implication of innovative algorithms for cognitive microgrid. It perceived the algorithms that are backed by artificial intelligence (AI) are quite efficient due to the precision, convergence speed, and less computation time as compared to the conventional heuristic methods. Solar PV/Battery grid‐connected MG is modeled to achieve optimum size, supreme power quality, reduced fluctuations in voltage and frequency, reduced settling time, eliminate short transient currents, seamless power, least annual cost and high reliability as an objective function under wavering weather condition and dynamic load changes. Four broad categorizations of metaheuristic algorithms, that is, evolutionary, swarm intelligence, physics, and human intelligence‐based algorithms are well elaborated in this study. The optimal solution to the fitness function by using a hybrid optimization method also directed in the study. This paper gives deep insight to readers working in the area.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6165</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Artificial intelligence ; Distributed generation ; Dynamic loads ; Evolutionary algorithms ; evolution‐based optimization ; Heuristic methods ; hybrid optimization ; Hybrid systems ; microgrid ; Optimization ; Optimization techniques ; Reliability aspects ; Swarm intelligence ; swarm‐based optimization ; Weather</subject><ispartof>Concurrency and computation, 2021-05, Vol.33 (10), p.n/a</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3415-97cb5435e9449af3485af49d91c624e6977a0f1692171d2521ba09ea7eb9aa803</citedby><cites>FETCH-LOGICAL-c3415-97cb5435e9449af3485af49d91c624e6977a0f1692171d2521ba09ea7eb9aa803</cites><orcidid>0000-0002-8357-731X ; 0000-0002-7637-7870 ; 0000-0001-9676-5312 ; 0000-0002-7359-2743 ; 0000-0001-9054-093X ; 0000-0002-6364-997X ; 0000-0001-9510-9903 ; 0000-0002-8280-7523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.6165$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.6165$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Arfeen, Zeeshan Ahmad</creatorcontrib><creatorcontrib>Sheikh, Usman Ullah</creatorcontrib><creatorcontrib>Azam, Mehreen Kausar</creatorcontrib><creatorcontrib>Hassan, Rabia</creatorcontrib><creatorcontrib>Faisal Shehzad, Hafiz Muhammad</creatorcontrib><creatorcontrib>Ashraf, Shahzad</creatorcontrib><creatorcontrib>Abdullah, Md Pauzi</creatorcontrib><creatorcontrib>Aziz, Lubna</creatorcontrib><title>A comprehensive review of modern trends in optimization techniques applied to hybrid microgrid systems</title><title>Concurrency and computation</title><description>Microgrids have drawn substantial consideration due to high quality and reliable mix sources of electricity. This paper articulates the implication of innovative algorithms for cognitive microgrid. It perceived the algorithms that are backed by artificial intelligence (AI) are quite efficient due to the precision, convergence speed, and less computation time as compared to the conventional heuristic methods. Solar PV/Battery grid‐connected MG is modeled to achieve optimum size, supreme power quality, reduced fluctuations in voltage and frequency, reduced settling time, eliminate short transient currents, seamless power, least annual cost and high reliability as an objective function under wavering weather condition and dynamic load changes. Four broad categorizations of metaheuristic algorithms, that is, evolutionary, swarm intelligence, physics, and human intelligence‐based algorithms are well elaborated in this study. The optimal solution to the fitness function by using a hybrid optimization method also directed in the study. This paper gives deep insight to readers working in the area.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Distributed generation</subject><subject>Dynamic loads</subject><subject>Evolutionary algorithms</subject><subject>evolution‐based optimization</subject><subject>Heuristic methods</subject><subject>hybrid optimization</subject><subject>Hybrid systems</subject><subject>microgrid</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Reliability aspects</subject><subject>Swarm intelligence</subject><subject>swarm‐based optimization</subject><subject>Weather</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFbBn7DgxUvqzn4k3WMp9QMKetDzskkmdkuTjbtpJf56EyvePM3L8DDz8hByDWwGjPG7osVZCqk6IRNQgicsFfL0L_P0nFzEuGUMgAmYkGpBC1-3ATfYRHdAGvDg8JP6ita-xNDQLmBTRuoa6tvO1e7Lds4Payw2jfvYY6S2bXcOS9p5uunz4EpauyL49zHFPnZYx0tyVtldxKvfOSVv96vX5WOyfn54Wi7WSSEkqERnRa6kUKil1LYScq5sJXWpoUi5xFRnmWUVpJpDBiVXHHLLNNoMc23tnIkpuTnebYMfu3Vm6_ehGV4ariDLtAQxUrdHamgZY8DKtMHVNvQGmBktmsGiGS0OaHJEP90O-385s3xZ_fDfmX50Cw</recordid><startdate>20210525</startdate><enddate>20210525</enddate><creator>Arfeen, Zeeshan Ahmad</creator><creator>Sheikh, Usman Ullah</creator><creator>Azam, Mehreen Kausar</creator><creator>Hassan, Rabia</creator><creator>Faisal Shehzad, Hafiz Muhammad</creator><creator>Ashraf, Shahzad</creator><creator>Abdullah, Md Pauzi</creator><creator>Aziz, Lubna</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8357-731X</orcidid><orcidid>https://orcid.org/0000-0002-7637-7870</orcidid><orcidid>https://orcid.org/0000-0001-9676-5312</orcidid><orcidid>https://orcid.org/0000-0002-7359-2743</orcidid><orcidid>https://orcid.org/0000-0001-9054-093X</orcidid><orcidid>https://orcid.org/0000-0002-6364-997X</orcidid><orcidid>https://orcid.org/0000-0001-9510-9903</orcidid><orcidid>https://orcid.org/0000-0002-8280-7523</orcidid></search><sort><creationdate>20210525</creationdate><title>A comprehensive review of modern trends in optimization techniques applied to hybrid microgrid systems</title><author>Arfeen, Zeeshan Ahmad ; Sheikh, Usman Ullah ; Azam, Mehreen Kausar ; Hassan, Rabia ; Faisal Shehzad, Hafiz Muhammad ; Ashraf, Shahzad ; Abdullah, Md Pauzi ; Aziz, Lubna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3415-97cb5435e9449af3485af49d91c624e6977a0f1692171d2521ba09ea7eb9aa803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Distributed generation</topic><topic>Dynamic loads</topic><topic>Evolutionary algorithms</topic><topic>evolution‐based optimization</topic><topic>Heuristic methods</topic><topic>hybrid optimization</topic><topic>Hybrid systems</topic><topic>microgrid</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Reliability aspects</topic><topic>Swarm intelligence</topic><topic>swarm‐based optimization</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arfeen, Zeeshan Ahmad</creatorcontrib><creatorcontrib>Sheikh, Usman Ullah</creatorcontrib><creatorcontrib>Azam, Mehreen Kausar</creatorcontrib><creatorcontrib>Hassan, Rabia</creatorcontrib><creatorcontrib>Faisal Shehzad, Hafiz Muhammad</creatorcontrib><creatorcontrib>Ashraf, Shahzad</creatorcontrib><creatorcontrib>Abdullah, Md Pauzi</creatorcontrib><creatorcontrib>Aziz, Lubna</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arfeen, Zeeshan Ahmad</au><au>Sheikh, Usman Ullah</au><au>Azam, Mehreen Kausar</au><au>Hassan, Rabia</au><au>Faisal Shehzad, Hafiz Muhammad</au><au>Ashraf, Shahzad</au><au>Abdullah, Md Pauzi</au><au>Aziz, Lubna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive review of modern trends in optimization techniques applied to hybrid microgrid systems</atitle><jtitle>Concurrency and computation</jtitle><date>2021-05-25</date><risdate>2021</risdate><volume>33</volume><issue>10</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Microgrids have drawn substantial consideration due to high quality and reliable mix sources of electricity. This paper articulates the implication of innovative algorithms for cognitive microgrid. It perceived the algorithms that are backed by artificial intelligence (AI) are quite efficient due to the precision, convergence speed, and less computation time as compared to the conventional heuristic methods. Solar PV/Battery grid‐connected MG is modeled to achieve optimum size, supreme power quality, reduced fluctuations in voltage and frequency, reduced settling time, eliminate short transient currents, seamless power, least annual cost and high reliability as an objective function under wavering weather condition and dynamic load changes. Four broad categorizations of metaheuristic algorithms, that is, evolutionary, swarm intelligence, physics, and human intelligence‐based algorithms are well elaborated in this study. The optimal solution to the fitness function by using a hybrid optimization method also directed in the study. This paper gives deep insight to readers working in the area.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cpe.6165</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-8357-731X</orcidid><orcidid>https://orcid.org/0000-0002-7637-7870</orcidid><orcidid>https://orcid.org/0000-0001-9676-5312</orcidid><orcidid>https://orcid.org/0000-0002-7359-2743</orcidid><orcidid>https://orcid.org/0000-0001-9054-093X</orcidid><orcidid>https://orcid.org/0000-0002-6364-997X</orcidid><orcidid>https://orcid.org/0000-0001-9510-9903</orcidid><orcidid>https://orcid.org/0000-0002-8280-7523</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2021-05, Vol.33 (10), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2517794130
source Access via Wiley Online Library
subjects Algorithms
Artificial intelligence
Distributed generation
Dynamic loads
Evolutionary algorithms
evolution‐based optimization
Heuristic methods
hybrid optimization
Hybrid systems
microgrid
Optimization
Optimization techniques
Reliability aspects
Swarm intelligence
swarm‐based optimization
Weather
title A comprehensive review of modern trends in optimization techniques applied to hybrid microgrid systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20review%20of%20modern%20trends%20in%20optimization%20techniques%20applied%20to%20hybrid%20microgrid%20systems&rft.jtitle=Concurrency%20and%20computation&rft.au=Arfeen,%20Zeeshan%20Ahmad&rft.date=2021-05-25&rft.volume=33&rft.issue=10&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6165&rft_dat=%3Cproquest_cross%3E2517794130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2517794130&rft_id=info:pmid/&rfr_iscdi=true