A comprehensive review of modern trends in optimization techniques applied to hybrid microgrid systems
Microgrids have drawn substantial consideration due to high quality and reliable mix sources of electricity. This paper articulates the implication of innovative algorithms for cognitive microgrid. It perceived the algorithms that are backed by artificial intelligence (AI) are quite efficient due to...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2021-05, Vol.33 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 33 |
creator | Arfeen, Zeeshan Ahmad Sheikh, Usman Ullah Azam, Mehreen Kausar Hassan, Rabia Faisal Shehzad, Hafiz Muhammad Ashraf, Shahzad Abdullah, Md Pauzi Aziz, Lubna |
description | Microgrids have drawn substantial consideration due to high quality and reliable mix sources of electricity. This paper articulates the implication of innovative algorithms for cognitive microgrid. It perceived the algorithms that are backed by artificial intelligence (AI) are quite efficient due to the precision, convergence speed, and less computation time as compared to the conventional heuristic methods. Solar PV/Battery grid‐connected MG is modeled to achieve optimum size, supreme power quality, reduced fluctuations in voltage and frequency, reduced settling time, eliminate short transient currents, seamless power, least annual cost and high reliability as an objective function under wavering weather condition and dynamic load changes. Four broad categorizations of metaheuristic algorithms, that is, evolutionary, swarm intelligence, physics, and human intelligence‐based algorithms are well elaborated in this study. The optimal solution to the fitness function by using a hybrid optimization method also directed in the study. This paper gives deep insight to readers working in the area. |
doi_str_mv | 10.1002/cpe.6165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2517794130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2517794130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3415-97cb5435e9449af3485af49d91c624e6977a0f1692171d2521ba09ea7eb9aa803</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFbBn7DgxUvqzn4k3WMp9QMKetDzskkmdkuTjbtpJf56EyvePM3L8DDz8hByDWwGjPG7osVZCqk6IRNQgicsFfL0L_P0nFzEuGUMgAmYkGpBC1-3ATfYRHdAGvDg8JP6ita-xNDQLmBTRuoa6tvO1e7Lds4Payw2jfvYY6S2bXcOS9p5uunz4EpauyL49zHFPnZYx0tyVtldxKvfOSVv96vX5WOyfn54Wi7WSSEkqERnRa6kUKil1LYScq5sJXWpoUi5xFRnmWUVpJpDBiVXHHLLNNoMc23tnIkpuTnebYMfu3Vm6_ehGV4ariDLtAQxUrdHamgZY8DKtMHVNvQGmBktmsGiGS0OaHJEP90O-385s3xZ_fDfmX50Cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517794130</pqid></control><display><type>article</type><title>A comprehensive review of modern trends in optimization techniques applied to hybrid microgrid systems</title><source>Access via Wiley Online Library</source><creator>Arfeen, Zeeshan Ahmad ; Sheikh, Usman Ullah ; Azam, Mehreen Kausar ; Hassan, Rabia ; Faisal Shehzad, Hafiz Muhammad ; Ashraf, Shahzad ; Abdullah, Md Pauzi ; Aziz, Lubna</creator><creatorcontrib>Arfeen, Zeeshan Ahmad ; Sheikh, Usman Ullah ; Azam, Mehreen Kausar ; Hassan, Rabia ; Faisal Shehzad, Hafiz Muhammad ; Ashraf, Shahzad ; Abdullah, Md Pauzi ; Aziz, Lubna</creatorcontrib><description>Microgrids have drawn substantial consideration due to high quality and reliable mix sources of electricity. This paper articulates the implication of innovative algorithms for cognitive microgrid. It perceived the algorithms that are backed by artificial intelligence (AI) are quite efficient due to the precision, convergence speed, and less computation time as compared to the conventional heuristic methods. Solar PV/Battery grid‐connected MG is modeled to achieve optimum size, supreme power quality, reduced fluctuations in voltage and frequency, reduced settling time, eliminate short transient currents, seamless power, least annual cost and high reliability as an objective function under wavering weather condition and dynamic load changes. Four broad categorizations of metaheuristic algorithms, that is, evolutionary, swarm intelligence, physics, and human intelligence‐based algorithms are well elaborated in this study. The optimal solution to the fitness function by using a hybrid optimization method also directed in the study. This paper gives deep insight to readers working in the area.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6165</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Artificial intelligence ; Distributed generation ; Dynamic loads ; Evolutionary algorithms ; evolution‐based optimization ; Heuristic methods ; hybrid optimization ; Hybrid systems ; microgrid ; Optimization ; Optimization techniques ; Reliability aspects ; Swarm intelligence ; swarm‐based optimization ; Weather</subject><ispartof>Concurrency and computation, 2021-05, Vol.33 (10), p.n/a</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3415-97cb5435e9449af3485af49d91c624e6977a0f1692171d2521ba09ea7eb9aa803</citedby><cites>FETCH-LOGICAL-c3415-97cb5435e9449af3485af49d91c624e6977a0f1692171d2521ba09ea7eb9aa803</cites><orcidid>0000-0002-8357-731X ; 0000-0002-7637-7870 ; 0000-0001-9676-5312 ; 0000-0002-7359-2743 ; 0000-0001-9054-093X ; 0000-0002-6364-997X ; 0000-0001-9510-9903 ; 0000-0002-8280-7523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.6165$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.6165$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Arfeen, Zeeshan Ahmad</creatorcontrib><creatorcontrib>Sheikh, Usman Ullah</creatorcontrib><creatorcontrib>Azam, Mehreen Kausar</creatorcontrib><creatorcontrib>Hassan, Rabia</creatorcontrib><creatorcontrib>Faisal Shehzad, Hafiz Muhammad</creatorcontrib><creatorcontrib>Ashraf, Shahzad</creatorcontrib><creatorcontrib>Abdullah, Md Pauzi</creatorcontrib><creatorcontrib>Aziz, Lubna</creatorcontrib><title>A comprehensive review of modern trends in optimization techniques applied to hybrid microgrid systems</title><title>Concurrency and computation</title><description>Microgrids have drawn substantial consideration due to high quality and reliable mix sources of electricity. This paper articulates the implication of innovative algorithms for cognitive microgrid. It perceived the algorithms that are backed by artificial intelligence (AI) are quite efficient due to the precision, convergence speed, and less computation time as compared to the conventional heuristic methods. Solar PV/Battery grid‐connected MG is modeled to achieve optimum size, supreme power quality, reduced fluctuations in voltage and frequency, reduced settling time, eliminate short transient currents, seamless power, least annual cost and high reliability as an objective function under wavering weather condition and dynamic load changes. Four broad categorizations of metaheuristic algorithms, that is, evolutionary, swarm intelligence, physics, and human intelligence‐based algorithms are well elaborated in this study. The optimal solution to the fitness function by using a hybrid optimization method also directed in the study. This paper gives deep insight to readers working in the area.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Distributed generation</subject><subject>Dynamic loads</subject><subject>Evolutionary algorithms</subject><subject>evolution‐based optimization</subject><subject>Heuristic methods</subject><subject>hybrid optimization</subject><subject>Hybrid systems</subject><subject>microgrid</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Reliability aspects</subject><subject>Swarm intelligence</subject><subject>swarm‐based optimization</subject><subject>Weather</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFbBn7DgxUvqzn4k3WMp9QMKetDzskkmdkuTjbtpJf56EyvePM3L8DDz8hByDWwGjPG7osVZCqk6IRNQgicsFfL0L_P0nFzEuGUMgAmYkGpBC1-3ATfYRHdAGvDg8JP6ita-xNDQLmBTRuoa6tvO1e7Lds4Payw2jfvYY6S2bXcOS9p5uunz4EpauyL49zHFPnZYx0tyVtldxKvfOSVv96vX5WOyfn54Wi7WSSEkqERnRa6kUKil1LYScq5sJXWpoUi5xFRnmWUVpJpDBiVXHHLLNNoMc23tnIkpuTnebYMfu3Vm6_ehGV4ariDLtAQxUrdHamgZY8DKtMHVNvQGmBktmsGiGS0OaHJEP90O-385s3xZ_fDfmX50Cw</recordid><startdate>20210525</startdate><enddate>20210525</enddate><creator>Arfeen, Zeeshan Ahmad</creator><creator>Sheikh, Usman Ullah</creator><creator>Azam, Mehreen Kausar</creator><creator>Hassan, Rabia</creator><creator>Faisal Shehzad, Hafiz Muhammad</creator><creator>Ashraf, Shahzad</creator><creator>Abdullah, Md Pauzi</creator><creator>Aziz, Lubna</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8357-731X</orcidid><orcidid>https://orcid.org/0000-0002-7637-7870</orcidid><orcidid>https://orcid.org/0000-0001-9676-5312</orcidid><orcidid>https://orcid.org/0000-0002-7359-2743</orcidid><orcidid>https://orcid.org/0000-0001-9054-093X</orcidid><orcidid>https://orcid.org/0000-0002-6364-997X</orcidid><orcidid>https://orcid.org/0000-0001-9510-9903</orcidid><orcidid>https://orcid.org/0000-0002-8280-7523</orcidid></search><sort><creationdate>20210525</creationdate><title>A comprehensive review of modern trends in optimization techniques applied to hybrid microgrid systems</title><author>Arfeen, Zeeshan Ahmad ; Sheikh, Usman Ullah ; Azam, Mehreen Kausar ; Hassan, Rabia ; Faisal Shehzad, Hafiz Muhammad ; Ashraf, Shahzad ; Abdullah, Md Pauzi ; Aziz, Lubna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3415-97cb5435e9449af3485af49d91c624e6977a0f1692171d2521ba09ea7eb9aa803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Distributed generation</topic><topic>Dynamic loads</topic><topic>Evolutionary algorithms</topic><topic>evolution‐based optimization</topic><topic>Heuristic methods</topic><topic>hybrid optimization</topic><topic>Hybrid systems</topic><topic>microgrid</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Reliability aspects</topic><topic>Swarm intelligence</topic><topic>swarm‐based optimization</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arfeen, Zeeshan Ahmad</creatorcontrib><creatorcontrib>Sheikh, Usman Ullah</creatorcontrib><creatorcontrib>Azam, Mehreen Kausar</creatorcontrib><creatorcontrib>Hassan, Rabia</creatorcontrib><creatorcontrib>Faisal Shehzad, Hafiz Muhammad</creatorcontrib><creatorcontrib>Ashraf, Shahzad</creatorcontrib><creatorcontrib>Abdullah, Md Pauzi</creatorcontrib><creatorcontrib>Aziz, Lubna</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arfeen, Zeeshan Ahmad</au><au>Sheikh, Usman Ullah</au><au>Azam, Mehreen Kausar</au><au>Hassan, Rabia</au><au>Faisal Shehzad, Hafiz Muhammad</au><au>Ashraf, Shahzad</au><au>Abdullah, Md Pauzi</au><au>Aziz, Lubna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive review of modern trends in optimization techniques applied to hybrid microgrid systems</atitle><jtitle>Concurrency and computation</jtitle><date>2021-05-25</date><risdate>2021</risdate><volume>33</volume><issue>10</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Microgrids have drawn substantial consideration due to high quality and reliable mix sources of electricity. This paper articulates the implication of innovative algorithms for cognitive microgrid. It perceived the algorithms that are backed by artificial intelligence (AI) are quite efficient due to the precision, convergence speed, and less computation time as compared to the conventional heuristic methods. Solar PV/Battery grid‐connected MG is modeled to achieve optimum size, supreme power quality, reduced fluctuations in voltage and frequency, reduced settling time, eliminate short transient currents, seamless power, least annual cost and high reliability as an objective function under wavering weather condition and dynamic load changes. Four broad categorizations of metaheuristic algorithms, that is, evolutionary, swarm intelligence, physics, and human intelligence‐based algorithms are well elaborated in this study. The optimal solution to the fitness function by using a hybrid optimization method also directed in the study. This paper gives deep insight to readers working in the area.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/cpe.6165</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-8357-731X</orcidid><orcidid>https://orcid.org/0000-0002-7637-7870</orcidid><orcidid>https://orcid.org/0000-0001-9676-5312</orcidid><orcidid>https://orcid.org/0000-0002-7359-2743</orcidid><orcidid>https://orcid.org/0000-0001-9054-093X</orcidid><orcidid>https://orcid.org/0000-0002-6364-997X</orcidid><orcidid>https://orcid.org/0000-0001-9510-9903</orcidid><orcidid>https://orcid.org/0000-0002-8280-7523</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2021-05, Vol.33 (10), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2517794130 |
source | Access via Wiley Online Library |
subjects | Algorithms Artificial intelligence Distributed generation Dynamic loads Evolutionary algorithms evolution‐based optimization Heuristic methods hybrid optimization Hybrid systems microgrid Optimization Optimization techniques Reliability aspects Swarm intelligence swarm‐based optimization Weather |
title | A comprehensive review of modern trends in optimization techniques applied to hybrid microgrid systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20review%20of%20modern%20trends%20in%20optimization%20techniques%20applied%20to%20hybrid%20microgrid%20systems&rft.jtitle=Concurrency%20and%20computation&rft.au=Arfeen,%20Zeeshan%20Ahmad&rft.date=2021-05-25&rft.volume=33&rft.issue=10&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6165&rft_dat=%3Cproquest_cross%3E2517794130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2517794130&rft_id=info:pmid/&rfr_iscdi=true |