Deep bidirectional long short-term memory for online multilingual writer identification based on an extended Beta-elliptic model and fuzzy elementary perceptual codes

The development of pattern recognition and artificial intelligence domains owes the writer identification challenge greatly. In fact, writer identification is still a challenging task in the definition of a set of features able to characterize the various handwritten documents. These handwritten doc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2021-04, Vol.80 (9), p.14075-14100
Hauptverfasser: Dhieb, Thameur, Boubaker, Houcine, Ouarda, Wael, Njah, Sourour, Ben Ayed, Mounir, Alimi, Adel M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14100
container_issue 9
container_start_page 14075
container_title Multimedia tools and applications
container_volume 80
creator Dhieb, Thameur
Boubaker, Houcine
Ouarda, Wael
Njah, Sourour
Ben Ayed, Mounir
Alimi, Adel M.
description The development of pattern recognition and artificial intelligence domains owes the writer identification challenge greatly. In fact, writer identification is still a challenging task in the definition of a set of features able to characterize the various handwritten documents. These handwritten documents are not generally stable and show a wide variability from the same person over time, or from different writers. The capacity to identify the documents’ writers provides further chances of using these handwritten documents for several applications like forensic science, control access, digital rights management and financial transactions. In this paper, we propose a novel system to text-independent online multilingual writer identification. Our system is based on new model that we named the Extended Beta-Elliptic Model. Moreover, we are interested in using the Fuzzy Elementary Perceptual Codes to characterize the handwriting of writers well. In addition, we adopted the use of Recurrent Neural Network with Deep Bidirectional Long Short-Term Memory in the training and identification phases. Experiments are conducted on IBM_UB_1 and ADAB datasets with 98.44% and 100% writer identification rates respectively. The proposed system using the combination of the Extended Beta-Elliptic model and the Fuzzy Elementary Perceptual Codes in features extraction and the Deep Bidirectional Long Short-Term Memory in classification outperforms the existing online writer identification systems on both Latin and Arabic scripts.
doi_str_mv 10.1007/s11042-020-10412-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2517675694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2517675694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-3f40fb823c5fa7a03a7ed9cb1426b639682cf6463c6a8e84c43c2b5e148a9b3a3</originalsourceid><addsrcrecordid>eNp9kc2OFSEQhTtGE8fRF3BF4hrlr4G71PE3mWQ2uiY0XVyZ0E0LdHTmgXxO63pN3M2KQ-o7B1JnGF5y9pozZt40zpkSlAlGUXBB7aPhgo9GUmMEf4xaWkbNyPjT4Vlrt4xxPQp1Mfx-D7CRKc2pQuiprD6TXNYjad9L7bRDXcgCS6l3JJZKyprTCmTZc0-ojjviP2tCjKQZ1p5iCv4UQybfYEae-JXArw7rjNd30D2FnNPWUyBLmSHjfCZxv7-_I5BhwQyPb21QA2z9FB-Qas-HJ9HnBi_-nZfDt48fvl59ptc3n75cvb2mQWrbqYyKxckKGcbojWfSG5gPYeJK6EnLg7YiRK20DNpbsCooGcQ0AlfWHybp5eXw6py71fJjh9bdbdkrLqU5MXKjzagPCilxpkItrVWIbqtpwX87ztypD3fuw2Ef7m8fzqJJnk0N4fUI9X_0A64_lTiSQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517675694</pqid></control><display><type>article</type><title>Deep bidirectional long short-term memory for online multilingual writer identification based on an extended Beta-elliptic model and fuzzy elementary perceptual codes</title><source>SpringerNature Journals</source><creator>Dhieb, Thameur ; Boubaker, Houcine ; Ouarda, Wael ; Njah, Sourour ; Ben Ayed, Mounir ; Alimi, Adel M.</creator><creatorcontrib>Dhieb, Thameur ; Boubaker, Houcine ; Ouarda, Wael ; Njah, Sourour ; Ben Ayed, Mounir ; Alimi, Adel M.</creatorcontrib><description>The development of pattern recognition and artificial intelligence domains owes the writer identification challenge greatly. In fact, writer identification is still a challenging task in the definition of a set of features able to characterize the various handwritten documents. These handwritten documents are not generally stable and show a wide variability from the same person over time, or from different writers. The capacity to identify the documents’ writers provides further chances of using these handwritten documents for several applications like forensic science, control access, digital rights management and financial transactions. In this paper, we propose a novel system to text-independent online multilingual writer identification. Our system is based on new model that we named the Extended Beta-Elliptic Model. Moreover, we are interested in using the Fuzzy Elementary Perceptual Codes to characterize the handwriting of writers well. In addition, we adopted the use of Recurrent Neural Network with Deep Bidirectional Long Short-Term Memory in the training and identification phases. Experiments are conducted on IBM_UB_1 and ADAB datasets with 98.44% and 100% writer identification rates respectively. The proposed system using the combination of the Extended Beta-Elliptic model and the Fuzzy Elementary Perceptual Codes in features extraction and the Deep Bidirectional Long Short-Term Memory in classification outperforms the existing online writer identification systems on both Latin and Arabic scripts.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-10412-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Access control ; Artificial intelligence ; Computer Communication Networks ; Computer Science ; Copy protection ; Data Structures and Information Theory ; Feature extraction ; Financial management ; Forensic science ; Handwriting ; Identification ; Multilingualism ; Multimedia Information Systems ; Pattern recognition ; Recurrent neural networks ; Short term ; Special Purpose and Application-Based Systems ; Writers</subject><ispartof>Multimedia tools and applications, 2021-04, Vol.80 (9), p.14075-14100</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-3f40fb823c5fa7a03a7ed9cb1426b639682cf6463c6a8e84c43c2b5e148a9b3a3</citedby><cites>FETCH-LOGICAL-c368t-3f40fb823c5fa7a03a7ed9cb1426b639682cf6463c6a8e84c43c2b5e148a9b3a3</cites><orcidid>0000-0001-9173-2204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-10412-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-10412-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dhieb, Thameur</creatorcontrib><creatorcontrib>Boubaker, Houcine</creatorcontrib><creatorcontrib>Ouarda, Wael</creatorcontrib><creatorcontrib>Njah, Sourour</creatorcontrib><creatorcontrib>Ben Ayed, Mounir</creatorcontrib><creatorcontrib>Alimi, Adel M.</creatorcontrib><title>Deep bidirectional long short-term memory for online multilingual writer identification based on an extended Beta-elliptic model and fuzzy elementary perceptual codes</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>The development of pattern recognition and artificial intelligence domains owes the writer identification challenge greatly. In fact, writer identification is still a challenging task in the definition of a set of features able to characterize the various handwritten documents. These handwritten documents are not generally stable and show a wide variability from the same person over time, or from different writers. The capacity to identify the documents’ writers provides further chances of using these handwritten documents for several applications like forensic science, control access, digital rights management and financial transactions. In this paper, we propose a novel system to text-independent online multilingual writer identification. Our system is based on new model that we named the Extended Beta-Elliptic Model. Moreover, we are interested in using the Fuzzy Elementary Perceptual Codes to characterize the handwriting of writers well. In addition, we adopted the use of Recurrent Neural Network with Deep Bidirectional Long Short-Term Memory in the training and identification phases. Experiments are conducted on IBM_UB_1 and ADAB datasets with 98.44% and 100% writer identification rates respectively. The proposed system using the combination of the Extended Beta-Elliptic model and the Fuzzy Elementary Perceptual Codes in features extraction and the Deep Bidirectional Long Short-Term Memory in classification outperforms the existing online writer identification systems on both Latin and Arabic scripts.</description><subject>Access control</subject><subject>Artificial intelligence</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Copy protection</subject><subject>Data Structures and Information Theory</subject><subject>Feature extraction</subject><subject>Financial management</subject><subject>Forensic science</subject><subject>Handwriting</subject><subject>Identification</subject><subject>Multilingualism</subject><subject>Multimedia Information Systems</subject><subject>Pattern recognition</subject><subject>Recurrent neural networks</subject><subject>Short term</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Writers</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc2OFSEQhTtGE8fRF3BF4hrlr4G71PE3mWQ2uiY0XVyZ0E0LdHTmgXxO63pN3M2KQ-o7B1JnGF5y9pozZt40zpkSlAlGUXBB7aPhgo9GUmMEf4xaWkbNyPjT4Vlrt4xxPQp1Mfx-D7CRKc2pQuiprD6TXNYjad9L7bRDXcgCS6l3JJZKyprTCmTZc0-ojjviP2tCjKQZ1p5iCv4UQybfYEae-JXArw7rjNd30D2FnNPWUyBLmSHjfCZxv7-_I5BhwQyPb21QA2z9FB-Qas-HJ9HnBi_-nZfDt48fvl59ptc3n75cvb2mQWrbqYyKxckKGcbojWfSG5gPYeJK6EnLg7YiRK20DNpbsCooGcQ0AlfWHybp5eXw6py71fJjh9bdbdkrLqU5MXKjzagPCilxpkItrVWIbqtpwX87ztypD3fuw2Ef7m8fzqJJnk0N4fUI9X_0A64_lTiSQQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Dhieb, Thameur</creator><creator>Boubaker, Houcine</creator><creator>Ouarda, Wael</creator><creator>Njah, Sourour</creator><creator>Ben Ayed, Mounir</creator><creator>Alimi, Adel M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9173-2204</orcidid></search><sort><creationdate>20210401</creationdate><title>Deep bidirectional long short-term memory for online multilingual writer identification based on an extended Beta-elliptic model and fuzzy elementary perceptual codes</title><author>Dhieb, Thameur ; Boubaker, Houcine ; Ouarda, Wael ; Njah, Sourour ; Ben Ayed, Mounir ; Alimi, Adel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-3f40fb823c5fa7a03a7ed9cb1426b639682cf6463c6a8e84c43c2b5e148a9b3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Access control</topic><topic>Artificial intelligence</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Copy protection</topic><topic>Data Structures and Information Theory</topic><topic>Feature extraction</topic><topic>Financial management</topic><topic>Forensic science</topic><topic>Handwriting</topic><topic>Identification</topic><topic>Multilingualism</topic><topic>Multimedia Information Systems</topic><topic>Pattern recognition</topic><topic>Recurrent neural networks</topic><topic>Short term</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Writers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhieb, Thameur</creatorcontrib><creatorcontrib>Boubaker, Houcine</creatorcontrib><creatorcontrib>Ouarda, Wael</creatorcontrib><creatorcontrib>Njah, Sourour</creatorcontrib><creatorcontrib>Ben Ayed, Mounir</creatorcontrib><creatorcontrib>Alimi, Adel M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhieb, Thameur</au><au>Boubaker, Houcine</au><au>Ouarda, Wael</au><au>Njah, Sourour</au><au>Ben Ayed, Mounir</au><au>Alimi, Adel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep bidirectional long short-term memory for online multilingual writer identification based on an extended Beta-elliptic model and fuzzy elementary perceptual codes</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>80</volume><issue>9</issue><spage>14075</spage><epage>14100</epage><pages>14075-14100</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>The development of pattern recognition and artificial intelligence domains owes the writer identification challenge greatly. In fact, writer identification is still a challenging task in the definition of a set of features able to characterize the various handwritten documents. These handwritten documents are not generally stable and show a wide variability from the same person over time, or from different writers. The capacity to identify the documents’ writers provides further chances of using these handwritten documents for several applications like forensic science, control access, digital rights management and financial transactions. In this paper, we propose a novel system to text-independent online multilingual writer identification. Our system is based on new model that we named the Extended Beta-Elliptic Model. Moreover, we are interested in using the Fuzzy Elementary Perceptual Codes to characterize the handwriting of writers well. In addition, we adopted the use of Recurrent Neural Network with Deep Bidirectional Long Short-Term Memory in the training and identification phases. Experiments are conducted on IBM_UB_1 and ADAB datasets with 98.44% and 100% writer identification rates respectively. The proposed system using the combination of the Extended Beta-Elliptic model and the Fuzzy Elementary Perceptual Codes in features extraction and the Deep Bidirectional Long Short-Term Memory in classification outperforms the existing online writer identification systems on both Latin and Arabic scripts.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-10412-8</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-9173-2204</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2021-04, Vol.80 (9), p.14075-14100
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2517675694
source SpringerNature Journals
subjects Access control
Artificial intelligence
Computer Communication Networks
Computer Science
Copy protection
Data Structures and Information Theory
Feature extraction
Financial management
Forensic science
Handwriting
Identification
Multilingualism
Multimedia Information Systems
Pattern recognition
Recurrent neural networks
Short term
Special Purpose and Application-Based Systems
Writers
title Deep bidirectional long short-term memory for online multilingual writer identification based on an extended Beta-elliptic model and fuzzy elementary perceptual codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20bidirectional%20long%20short-term%20memory%20for%20online%20multilingual%20writer%20identification%20based%20on%20an%20extended%20Beta-elliptic%20model%20and%20fuzzy%20elementary%20perceptual%20codes&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Dhieb,%20Thameur&rft.date=2021-04-01&rft.volume=80&rft.issue=9&rft.spage=14075&rft.epage=14100&rft.pages=14075-14100&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-10412-8&rft_dat=%3Cproquest_cross%3E2517675694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2517675694&rft_id=info:pmid/&rfr_iscdi=true