On the variation of the Hardy–Littlewood maximal functions on finite graphs
Let G be a connected and finite graph with the set of vertices V and the set of edges E . Let M G be the Hardy–Littlewood maximal function defined on graph G and M α , G ( 0 ≤ α < 1 ) be its fractional version. In this paper, the regularity problems related to M G and M α , G will be studied. We...
Gespeichert in:
Veröffentlicht in: | Collectanea mathematica (Barcelona) 2021-05, Vol.72 (2), p.333-349 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a connected and finite graph with the set of vertices
V
and the set of edges
E
. Let
M
G
be the Hardy–Littlewood maximal function defined on graph
G
and
M
α
,
G
(
0
≤
α
<
1
)
be its fractional version. In this paper, the regularity problems related to
M
G
and
M
α
,
G
will be studied. We show that
M
G
:
BV
p
(
G
)
→
BV
p
(
G
)
is bounded and
M
α
,
G
:
ℓ
p
(
V
)
→
BV
q
(
G
)
is bounded and continuous for all
0
<
p
,
q
≤
∞
. Here
BV
p
(
G
)
is the set of all functions of bounded
p
-variation on
V
. The operator norms of
M
G
and
M
α
,
G
have also been investigated. |
---|---|
ISSN: | 0010-0757 2038-4815 |
DOI: | 10.1007/s13348-020-00290-6 |