Atmospheric Pressure Mass Spectrometry Imaging Using Laser Ablation, Followed by Dielectric Barrier Discharge Ionization
Mass spectrometry imaging (MSI) has become a powerful tool in diverse fields, for example, life science, biomaterials, and catalysis, for its ability of in situ and real-time visualization of the location of chemical compounds in samples. Although laser ablation (LA) achieves high spatial resolution...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2021-04, Vol.93 (15), p.6232-6238 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6238 |
---|---|
container_issue | 15 |
container_start_page | 6232 |
container_title | Analytical chemistry (Washington) |
container_volume | 93 |
creator | Lu, Qiao Xu, Zhouyi You, Xue Ma, Siyuan Zenobi, Renato |
description | Mass spectrometry imaging (MSI) has become a powerful tool in diverse fields, for example, life science, biomaterials, and catalysis, for its ability of in situ and real-time visualization of the location of chemical compounds in samples. Although laser ablation (LA) achieves high spatial resolution in MSI, the ion yield can be very low. We therefore combined an LA system with an ambient ion source for post-ionization and an atmospheric pressure (AP) inlet mass spectrometer to construct a novel AP-MSI platform. A dielectric barrier discharge ionization (DBDI) source is operated in the “active sampling capillary” configuration, can be coupled to any mass spectrometer with an AP interface, and possesses high ion transmission efficiency. This study presents some application examples based on LA-DBDI, a low-cost and flexible strategy for AP-MSI, which does not require any sample pretreatment, and we show MS imaging of endogenous species in a traditional Chinese herbal medicine and of a drug molecule in zebra fish tissue, with a lateral resolution of ≈20 μm. |
doi_str_mv | 10.1021/acs.analchem.1c00549 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2517417360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2517417360</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-392ab6370080d3328525e835fd874d165bcb0ebb76d88a8fe289353cb47361963</originalsourceid><addsrcrecordid>eNp9kUFP2zAYhq1paHSFfzBNlnbZgZTPduK4x0LpVqkIJOAc2c7XNiiJOzvRKL9-Lm057MDFvjzPa3_fS8g3BiMGnF1qG0a61bVdYzNiFiBLx5_IgGUcEqkU_0wGACASngOckq8hPAMwBkx-IadCKC4FiAF5mXSNC5s1-srSe48h9B7prQ6BPmzQdt412PktnTd6VbUr-hR250IH9HRiat1Vrr2gM1fX7i-W1GzptMJ6J8a8K-19FcFpFexa-xXSuWur1zfpjJwsdR3w_HAPydPs5vH6d7K4-zW_niwSLXLZJWLMtZEizqCgFIKrjGeoRLYsVZ6WTGbGGkBjclkqpdUSuRqLTFiT5kKysRRD8nOfu_HuT4-hK5r4G6xr3aLrQ8GzuM0050JF9Md_6LPrfVzxG5WnLEZCpNI9Zb0LweOy2Piq0X5bMCh2zRSxmeLYTHFoJmrfD-G9abB8l45VRAD2wE5_f_jDzH8YtJ0f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517417360</pqid></control><display><type>article</type><title>Atmospheric Pressure Mass Spectrometry Imaging Using Laser Ablation, Followed by Dielectric Barrier Discharge Ionization</title><source>ACS Publications</source><creator>Lu, Qiao ; Xu, Zhouyi ; You, Xue ; Ma, Siyuan ; Zenobi, Renato</creator><creatorcontrib>Lu, Qiao ; Xu, Zhouyi ; You, Xue ; Ma, Siyuan ; Zenobi, Renato</creatorcontrib><description>Mass spectrometry imaging (MSI) has become a powerful tool in diverse fields, for example, life science, biomaterials, and catalysis, for its ability of in situ and real-time visualization of the location of chemical compounds in samples. Although laser ablation (LA) achieves high spatial resolution in MSI, the ion yield can be very low. We therefore combined an LA system with an ambient ion source for post-ionization and an atmospheric pressure (AP) inlet mass spectrometer to construct a novel AP-MSI platform. A dielectric barrier discharge ionization (DBDI) source is operated in the “active sampling capillary” configuration, can be coupled to any mass spectrometer with an AP interface, and possesses high ion transmission efficiency. This study presents some application examples based on LA-DBDI, a low-cost and flexible strategy for AP-MSI, which does not require any sample pretreatment, and we show MS imaging of endogenous species in a traditional Chinese herbal medicine and of a drug molecule in zebra fish tissue, with a lateral resolution of ≈20 μm.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.1c00549</identifier><identifier>PMID: 33826303</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Ablation ; Analytical chemistry ; Animal tissues ; Atmospheric pressure ; Biomaterials ; Biomedical materials ; Catalysis ; Chemical compounds ; Chemistry ; Dielectric barrier discharge ; Endemic species ; Herbal medicine ; Imaging ; Ion sources ; Ionization ; Ions ; Laser ablation ; Mass spectrometry ; Mass spectroscopy ; Pretreatment ; Scientific imaging ; Spatial discrimination ; Spatial resolution ; Spectroscopy ; Transmission efficiency</subject><ispartof>Analytical chemistry (Washington), 2021-04, Vol.93 (15), p.6232-6238</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Apr 20, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-392ab6370080d3328525e835fd874d165bcb0ebb76d88a8fe289353cb47361963</citedby><cites>FETCH-LOGICAL-a376t-392ab6370080d3328525e835fd874d165bcb0ebb76d88a8fe289353cb47361963</cites><orcidid>0000-0001-5211-4358 ; 0000-0001-6071-8477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.1c00549$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.1c00549$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33826303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Qiao</creatorcontrib><creatorcontrib>Xu, Zhouyi</creatorcontrib><creatorcontrib>You, Xue</creatorcontrib><creatorcontrib>Ma, Siyuan</creatorcontrib><creatorcontrib>Zenobi, Renato</creatorcontrib><title>Atmospheric Pressure Mass Spectrometry Imaging Using Laser Ablation, Followed by Dielectric Barrier Discharge Ionization</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Mass spectrometry imaging (MSI) has become a powerful tool in diverse fields, for example, life science, biomaterials, and catalysis, for its ability of in situ and real-time visualization of the location of chemical compounds in samples. Although laser ablation (LA) achieves high spatial resolution in MSI, the ion yield can be very low. We therefore combined an LA system with an ambient ion source for post-ionization and an atmospheric pressure (AP) inlet mass spectrometer to construct a novel AP-MSI platform. A dielectric barrier discharge ionization (DBDI) source is operated in the “active sampling capillary” configuration, can be coupled to any mass spectrometer with an AP interface, and possesses high ion transmission efficiency. This study presents some application examples based on LA-DBDI, a low-cost and flexible strategy for AP-MSI, which does not require any sample pretreatment, and we show MS imaging of endogenous species in a traditional Chinese herbal medicine and of a drug molecule in zebra fish tissue, with a lateral resolution of ≈20 μm.</description><subject>Ablation</subject><subject>Analytical chemistry</subject><subject>Animal tissues</subject><subject>Atmospheric pressure</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Catalysis</subject><subject>Chemical compounds</subject><subject>Chemistry</subject><subject>Dielectric barrier discharge</subject><subject>Endemic species</subject><subject>Herbal medicine</subject><subject>Imaging</subject><subject>Ion sources</subject><subject>Ionization</subject><subject>Ions</subject><subject>Laser ablation</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Pretreatment</subject><subject>Scientific imaging</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Spectroscopy</subject><subject>Transmission efficiency</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUFP2zAYhq1paHSFfzBNlnbZgZTPduK4x0LpVqkIJOAc2c7XNiiJOzvRKL9-Lm057MDFvjzPa3_fS8g3BiMGnF1qG0a61bVdYzNiFiBLx5_IgGUcEqkU_0wGACASngOckq8hPAMwBkx-IadCKC4FiAF5mXSNC5s1-srSe48h9B7prQ6BPmzQdt412PktnTd6VbUr-hR250IH9HRiat1Vrr2gM1fX7i-W1GzptMJ6J8a8K-19FcFpFexa-xXSuWur1zfpjJwsdR3w_HAPydPs5vH6d7K4-zW_niwSLXLZJWLMtZEizqCgFIKrjGeoRLYsVZ6WTGbGGkBjclkqpdUSuRqLTFiT5kKysRRD8nOfu_HuT4-hK5r4G6xr3aLrQ8GzuM0050JF9Md_6LPrfVzxG5WnLEZCpNI9Zb0LweOy2Piq0X5bMCh2zRSxmeLYTHFoJmrfD-G9abB8l45VRAD2wE5_f_jDzH8YtJ0f</recordid><startdate>20210420</startdate><enddate>20210420</enddate><creator>Lu, Qiao</creator><creator>Xu, Zhouyi</creator><creator>You, Xue</creator><creator>Ma, Siyuan</creator><creator>Zenobi, Renato</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5211-4358</orcidid><orcidid>https://orcid.org/0000-0001-6071-8477</orcidid></search><sort><creationdate>20210420</creationdate><title>Atmospheric Pressure Mass Spectrometry Imaging Using Laser Ablation, Followed by Dielectric Barrier Discharge Ionization</title><author>Lu, Qiao ; Xu, Zhouyi ; You, Xue ; Ma, Siyuan ; Zenobi, Renato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-392ab6370080d3328525e835fd874d165bcb0ebb76d88a8fe289353cb47361963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Analytical chemistry</topic><topic>Animal tissues</topic><topic>Atmospheric pressure</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Catalysis</topic><topic>Chemical compounds</topic><topic>Chemistry</topic><topic>Dielectric barrier discharge</topic><topic>Endemic species</topic><topic>Herbal medicine</topic><topic>Imaging</topic><topic>Ion sources</topic><topic>Ionization</topic><topic>Ions</topic><topic>Laser ablation</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Pretreatment</topic><topic>Scientific imaging</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Spectroscopy</topic><topic>Transmission efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Qiao</creatorcontrib><creatorcontrib>Xu, Zhouyi</creatorcontrib><creatorcontrib>You, Xue</creatorcontrib><creatorcontrib>Ma, Siyuan</creatorcontrib><creatorcontrib>Zenobi, Renato</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Qiao</au><au>Xu, Zhouyi</au><au>You, Xue</au><au>Ma, Siyuan</au><au>Zenobi, Renato</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atmospheric Pressure Mass Spectrometry Imaging Using Laser Ablation, Followed by Dielectric Barrier Discharge Ionization</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2021-04-20</date><risdate>2021</risdate><volume>93</volume><issue>15</issue><spage>6232</spage><epage>6238</epage><pages>6232-6238</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Mass spectrometry imaging (MSI) has become a powerful tool in diverse fields, for example, life science, biomaterials, and catalysis, for its ability of in situ and real-time visualization of the location of chemical compounds in samples. Although laser ablation (LA) achieves high spatial resolution in MSI, the ion yield can be very low. We therefore combined an LA system with an ambient ion source for post-ionization and an atmospheric pressure (AP) inlet mass spectrometer to construct a novel AP-MSI platform. A dielectric barrier discharge ionization (DBDI) source is operated in the “active sampling capillary” configuration, can be coupled to any mass spectrometer with an AP interface, and possesses high ion transmission efficiency. This study presents some application examples based on LA-DBDI, a low-cost and flexible strategy for AP-MSI, which does not require any sample pretreatment, and we show MS imaging of endogenous species in a traditional Chinese herbal medicine and of a drug molecule in zebra fish tissue, with a lateral resolution of ≈20 μm.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33826303</pmid><doi>10.1021/acs.analchem.1c00549</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5211-4358</orcidid><orcidid>https://orcid.org/0000-0001-6071-8477</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2021-04, Vol.93 (15), p.6232-6238 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_journals_2517417360 |
source | ACS Publications |
subjects | Ablation Analytical chemistry Animal tissues Atmospheric pressure Biomaterials Biomedical materials Catalysis Chemical compounds Chemistry Dielectric barrier discharge Endemic species Herbal medicine Imaging Ion sources Ionization Ions Laser ablation Mass spectrometry Mass spectroscopy Pretreatment Scientific imaging Spatial discrimination Spatial resolution Spectroscopy Transmission efficiency |
title | Atmospheric Pressure Mass Spectrometry Imaging Using Laser Ablation, Followed by Dielectric Barrier Discharge Ionization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atmospheric%20Pressure%20Mass%20Spectrometry%20Imaging%20Using%20Laser%20Ablation,%20Followed%20by%20Dielectric%20Barrier%20Discharge%20Ionization&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Lu,%20Qiao&rft.date=2021-04-20&rft.volume=93&rft.issue=15&rft.spage=6232&rft.epage=6238&rft.pages=6232-6238&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.1c00549&rft_dat=%3Cproquest_cross%3E2517417360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2517417360&rft_id=info:pmid/33826303&rfr_iscdi=true |