On the Bogomolov-Gieseker inequality for tame Deligne-Mumford surfaces

We generalize the Bogomolov-Gieseker inequality for semistable coherent sheaves on smooth projective surfaces to smooth Deligne-Mumford surfaces. We work over positive characteristic \(p>0\) and generalize Langer's method to smooth Deligne-Mumford stacks. As applications we obtain the Bogomo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-04
Hauptverfasser: Jiang, Yunfeng, Kundu, Promit, Sun, Hao Max
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jiang, Yunfeng
Kundu, Promit
Sun, Hao Max
description We generalize the Bogomolov-Gieseker inequality for semistable coherent sheaves on smooth projective surfaces to smooth Deligne-Mumford surfaces. We work over positive characteristic \(p>0\) and generalize Langer's method to smooth Deligne-Mumford stacks. As applications we obtain the Bogomolov inequality for semistable coherent sheaves on a Deligne-Mumford surface in characteristic zero, and the Bogomolov inequality for semistable sheaves on a root stack over a smooth surface which is equivalent to the Bogomolov inequality for the rational parabolic sheaves on a smooth surface \(S\). In a joint appendix with Hao Max Sun, we generalize the Bogomolov inequality formula to Simpson Higgs sheaves on tame Deligne-Mumford stacks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2517116999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2517116999</sourcerecordid><originalsourceid>FETCH-proquest_journals_25171169993</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOA60CS2tVs_1Y24cV-CvtbUNLH5CN5eFx7A1cDMTEjChWB0veJ8RlLv-yzLeFHyPBcJqc8Gwh1hYzs7WG1f9KDQ4wMdKINjlFqFN7TWQZADwg616gzSUxy-7gY-ulZe0S_ItJXaY_rjnCzr_WV7pE9nx4g-NL2NznxTw3NWMlZUVSX-uz6-ojtr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517116999</pqid></control><display><type>article</type><title>On the Bogomolov-Gieseker inequality for tame Deligne-Mumford surfaces</title><source>Free E- Journals</source><creator>Jiang, Yunfeng ; Kundu, Promit ; Sun, Hao Max</creator><creatorcontrib>Jiang, Yunfeng ; Kundu, Promit ; Sun, Hao Max</creatorcontrib><description>We generalize the Bogomolov-Gieseker inequality for semistable coherent sheaves on smooth projective surfaces to smooth Deligne-Mumford surfaces. We work over positive characteristic \(p&gt;0\) and generalize Langer's method to smooth Deligne-Mumford stacks. As applications we obtain the Bogomolov inequality for semistable coherent sheaves on a Deligne-Mumford surface in characteristic zero, and the Bogomolov inequality for semistable sheaves on a root stack over a smooth surface which is equivalent to the Bogomolov inequality for the rational parabolic sheaves on a smooth surface \(S\). In a joint appendix with Hao Max Sun, we generalize the Bogomolov inequality formula to Simpson Higgs sheaves on tame Deligne-Mumford stacks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Inequality ; Sheaves ; Stacks</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Jiang, Yunfeng</creatorcontrib><creatorcontrib>Kundu, Promit</creatorcontrib><creatorcontrib>Sun, Hao Max</creatorcontrib><title>On the Bogomolov-Gieseker inequality for tame Deligne-Mumford surfaces</title><title>arXiv.org</title><description>We generalize the Bogomolov-Gieseker inequality for semistable coherent sheaves on smooth projective surfaces to smooth Deligne-Mumford surfaces. We work over positive characteristic \(p&gt;0\) and generalize Langer's method to smooth Deligne-Mumford stacks. As applications we obtain the Bogomolov inequality for semistable coherent sheaves on a Deligne-Mumford surface in characteristic zero, and the Bogomolov inequality for semistable sheaves on a root stack over a smooth surface which is equivalent to the Bogomolov inequality for the rational parabolic sheaves on a smooth surface \(S\). In a joint appendix with Hao Max Sun, we generalize the Bogomolov inequality formula to Simpson Higgs sheaves on tame Deligne-Mumford stacks.</description><subject>Inequality</subject><subject>Sheaves</subject><subject>Stacks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOA60CS2tVs_1Y24cV-CvtbUNLH5CN5eFx7A1cDMTEjChWB0veJ8RlLv-yzLeFHyPBcJqc8Gwh1hYzs7WG1f9KDQ4wMdKINjlFqFN7TWQZADwg616gzSUxy-7gY-ulZe0S_ItJXaY_rjnCzr_WV7pE9nx4g-NL2NznxTw3NWMlZUVSX-uz6-ojtr</recordid><startdate>20210422</startdate><enddate>20210422</enddate><creator>Jiang, Yunfeng</creator><creator>Kundu, Promit</creator><creator>Sun, Hao Max</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210422</creationdate><title>On the Bogomolov-Gieseker inequality for tame Deligne-Mumford surfaces</title><author>Jiang, Yunfeng ; Kundu, Promit ; Sun, Hao Max</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25171169993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Inequality</topic><topic>Sheaves</topic><topic>Stacks</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yunfeng</creatorcontrib><creatorcontrib>Kundu, Promit</creatorcontrib><creatorcontrib>Sun, Hao Max</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yunfeng</au><au>Kundu, Promit</au><au>Sun, Hao Max</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Bogomolov-Gieseker inequality for tame Deligne-Mumford surfaces</atitle><jtitle>arXiv.org</jtitle><date>2021-04-22</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We generalize the Bogomolov-Gieseker inequality for semistable coherent sheaves on smooth projective surfaces to smooth Deligne-Mumford surfaces. We work over positive characteristic \(p&gt;0\) and generalize Langer's method to smooth Deligne-Mumford stacks. As applications we obtain the Bogomolov inequality for semistable coherent sheaves on a Deligne-Mumford surface in characteristic zero, and the Bogomolov inequality for semistable sheaves on a root stack over a smooth surface which is equivalent to the Bogomolov inequality for the rational parabolic sheaves on a smooth surface \(S\). In a joint appendix with Hao Max Sun, we generalize the Bogomolov inequality formula to Simpson Higgs sheaves on tame Deligne-Mumford stacks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2517116999
source Free E- Journals
subjects Inequality
Sheaves
Stacks
title On the Bogomolov-Gieseker inequality for tame Deligne-Mumford surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Bogomolov-Gieseker%20inequality%20for%20tame%20Deligne-Mumford%20surfaces&rft.jtitle=arXiv.org&rft.au=Jiang,%20Yunfeng&rft.date=2021-04-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2517116999%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2517116999&rft_id=info:pmid/&rfr_iscdi=true