Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes
We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation can...
Gespeichert in:
Veröffentlicht in: | Ecosystems (New York) 2021-04, Vol.24 (3), p.667-685 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 685 |
---|---|
container_issue | 3 |
container_start_page | 667 |
container_title | Ecosystems (New York) |
container_volume | 24 |
creator | Rastetter, Edward B. Kling, George W. Shaver, Gaius R. Crump, Byron C. Gough, Laura Griffin, Kevin L. |
description | We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation cannot take up nitrogen as fast as it is released from soil. In Phase 2, the ecosystem begins re-accumulating nitrogen and converges on a quasi-steady state in which vegetation and soil-microbial processes are in balance. In Phase 3, vegetation and soil-microbial processes remain in balance and the ecosystem slowly re-accumulates the remaining nitrogen. Phase 3 follows a balanced-accumulation trajectory along a continuum of quasi-steady states that approaches the true steady state asymptotically. We examine the effects of three ecosystem properties on recovery: openness of the nitrogen cycle, nitrogen distribution in and turnover between vegetation and soils, and the proportion of nitrogen losses that are in a refractory form. Openness exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high fraction of ecosystem nitrogen in vegetation, resulting from nitrogen turnover that is slow in vegetation but fast in soil, exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high proportion of nitrogen loss in refractory form mitigates Phase 1 nitrogen losses and speeds recovery in Phases 2 and 3. Application of our conceptual framework requires empirical recognition of the continuum of quasi-steady states constituting the balanced-accumulation trajectory and a distinction between the balanced-accumulation trajectory and the true steady state. |
doi_str_mv | 10.1007/s10021-020-00542-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2517102174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713729830</galeid><jstor_id>48762002</jstor_id><sourcerecordid>A713729830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-f8ec990e786b8ceb084017b5ab80777a96f1c27b0f5e11888d18140947219f573</originalsourceid><addsrcrecordid>eNp9kd-O1CAUxhujievqC5iYkHi7rAfaDvRyd9xVk9E1_rsllDmMTFoYgdH00Xw76dSoV4YEyMn3-w6cr6qeMrhkAOJFKjtnFDhQgLbhtL5XnbGmbimseHf_dOe0kw08rB6ltAdgrWyas-rnjQlpShlH8gFN-I5xIjaGkbx0KR9jr71B4hJZB59y1M7jlvQTeUfWkxmQ3B3Qe0zpgnzBHWadXfD0Y3BDUcwO0fXHuXZBbkMcSbClvgkpYSG035L8Fcm1Hk5drjH_QPT_OJ0ksxt960wMvdMDeR-DwdngcfXA6iHhk9_nefX59ubT-jXd3L16s77aUFNLyNRKNF0HKOSqlwZ7KDNgom91L0EIobuVZYaLHmyLjEkpt0yyBrpGcNbZVtTn1fPF9xDDtyOmrPbhGH1pqXjLBCtzF01RXS6qnR5QOW9DmZYpa4ujM8GjdaV-JVgteCdrKABfgPKxlCJadYhu1HFSDNScqVoyVSVTdcpU1QWqFygVsd9h_PuW_1LPFmqfcoh_-jRSrHgR178A0oSuhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517102174</pqid></control><display><type>article</type><title>Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes</title><source>SpringerLink Journals</source><creator>Rastetter, Edward B. ; Kling, George W. ; Shaver, Gaius R. ; Crump, Byron C. ; Gough, Laura ; Griffin, Kevin L.</creator><creatorcontrib>Rastetter, Edward B. ; Kling, George W. ; Shaver, Gaius R. ; Crump, Byron C. ; Gough, Laura ; Griffin, Kevin L.</creatorcontrib><description>We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation cannot take up nitrogen as fast as it is released from soil. In Phase 2, the ecosystem begins re-accumulating nitrogen and converges on a quasi-steady state in which vegetation and soil-microbial processes are in balance. In Phase 3, vegetation and soil-microbial processes remain in balance and the ecosystem slowly re-accumulates the remaining nitrogen. Phase 3 follows a balanced-accumulation trajectory along a continuum of quasi-steady states that approaches the true steady state asymptotically. We examine the effects of three ecosystem properties on recovery: openness of the nitrogen cycle, nitrogen distribution in and turnover between vegetation and soils, and the proportion of nitrogen losses that are in a refractory form. Openness exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high fraction of ecosystem nitrogen in vegetation, resulting from nitrogen turnover that is slow in vegetation but fast in soil, exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high proportion of nitrogen loss in refractory form mitigates Phase 1 nitrogen losses and speeds recovery in Phases 2 and 3. Application of our conceptual framework requires empirical recognition of the continuum of quasi-steady states constituting the balanced-accumulation trajectory and a distinction between the balanced-accumulation trajectory and the true steady state.</description><identifier>ISSN: 1432-9840</identifier><identifier>EISSN: 1435-0629</identifier><identifier>DOI: 10.1007/s10021-020-00542-3</identifier><language>eng</language><publisher>New York: Springer Science + Business Media</publisher><subject>Accumulation ; Biomedical and Life Sciences ; Ecology ; Ecosystem assessment ; Ecosystem recovery ; Ecosystems ; Environmental Management ; Geoecology/Natural Processes ; Hydrology/Water Resources ; Life Sciences ; Microorganisms ; Nitrification ; Nitrogen ; Nitrogen cycle ; Organic matter ; Organic soils ; Original Articles ; Phases ; Plant Sciences ; Quasi-steady states ; Recovery ; Soil microbiology ; Soil organic matter ; Soils ; Terrestrial ecosystems ; Vegetation ; Zoology</subject><ispartof>Ecosystems (New York), 2021-04, Vol.24 (3), p.667-685</ispartof><rights>2020 Springer Science+Business Media, LLC, part of Springer Nature</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-f8ec990e786b8ceb084017b5ab80777a96f1c27b0f5e11888d18140947219f573</citedby><cites>FETCH-LOGICAL-c380t-f8ec990e786b8ceb084017b5ab80777a96f1c27b0f5e11888d18140947219f573</cites><orcidid>0000-0002-8620-5431 ; 0000-0002-6745-9989 ; 0000-0001-7062-1273 ; 0000-0003-4124-3757 ; 0000-0002-9312-7910 ; 0000-0002-6349-8227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10021-020-00542-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10021-020-00542-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rastetter, Edward B.</creatorcontrib><creatorcontrib>Kling, George W.</creatorcontrib><creatorcontrib>Shaver, Gaius R.</creatorcontrib><creatorcontrib>Crump, Byron C.</creatorcontrib><creatorcontrib>Gough, Laura</creatorcontrib><creatorcontrib>Griffin, Kevin L.</creatorcontrib><title>Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes</title><title>Ecosystems (New York)</title><addtitle>Ecosystems</addtitle><description>We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation cannot take up nitrogen as fast as it is released from soil. In Phase 2, the ecosystem begins re-accumulating nitrogen and converges on a quasi-steady state in which vegetation and soil-microbial processes are in balance. In Phase 3, vegetation and soil-microbial processes remain in balance and the ecosystem slowly re-accumulates the remaining nitrogen. Phase 3 follows a balanced-accumulation trajectory along a continuum of quasi-steady states that approaches the true steady state asymptotically. We examine the effects of three ecosystem properties on recovery: openness of the nitrogen cycle, nitrogen distribution in and turnover between vegetation and soils, and the proportion of nitrogen losses that are in a refractory form. Openness exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high fraction of ecosystem nitrogen in vegetation, resulting from nitrogen turnover that is slow in vegetation but fast in soil, exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high proportion of nitrogen loss in refractory form mitigates Phase 1 nitrogen losses and speeds recovery in Phases 2 and 3. Application of our conceptual framework requires empirical recognition of the continuum of quasi-steady states constituting the balanced-accumulation trajectory and a distinction between the balanced-accumulation trajectory and the true steady state.</description><subject>Accumulation</subject><subject>Biomedical and Life Sciences</subject><subject>Ecology</subject><subject>Ecosystem assessment</subject><subject>Ecosystem recovery</subject><subject>Ecosystems</subject><subject>Environmental Management</subject><subject>Geoecology/Natural Processes</subject><subject>Hydrology/Water Resources</subject><subject>Life Sciences</subject><subject>Microorganisms</subject><subject>Nitrification</subject><subject>Nitrogen</subject><subject>Nitrogen cycle</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>Original Articles</subject><subject>Phases</subject><subject>Plant Sciences</subject><subject>Quasi-steady states</subject><subject>Recovery</subject><subject>Soil microbiology</subject><subject>Soil organic matter</subject><subject>Soils</subject><subject>Terrestrial ecosystems</subject><subject>Vegetation</subject><subject>Zoology</subject><issn>1432-9840</issn><issn>1435-0629</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kd-O1CAUxhujievqC5iYkHi7rAfaDvRyd9xVk9E1_rsllDmMTFoYgdH00Xw76dSoV4YEyMn3-w6cr6qeMrhkAOJFKjtnFDhQgLbhtL5XnbGmbimseHf_dOe0kw08rB6ltAdgrWyas-rnjQlpShlH8gFN-I5xIjaGkbx0KR9jr71B4hJZB59y1M7jlvQTeUfWkxmQ3B3Qe0zpgnzBHWadXfD0Y3BDUcwO0fXHuXZBbkMcSbClvgkpYSG035L8Fcm1Hk5drjH_QPT_OJ0ksxt960wMvdMDeR-DwdngcfXA6iHhk9_nefX59ubT-jXd3L16s77aUFNLyNRKNF0HKOSqlwZ7KDNgom91L0EIobuVZYaLHmyLjEkpt0yyBrpGcNbZVtTn1fPF9xDDtyOmrPbhGH1pqXjLBCtzF01RXS6qnR5QOW9DmZYpa4ujM8GjdaV-JVgteCdrKABfgPKxlCJadYhu1HFSDNScqVoyVSVTdcpU1QWqFygVsd9h_PuW_1LPFmqfcoh_-jRSrHgR178A0oSuhw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Rastetter, Edward B.</creator><creator>Kling, George W.</creator><creator>Shaver, Gaius R.</creator><creator>Crump, Byron C.</creator><creator>Gough, Laura</creator><creator>Griffin, Kevin L.</creator><general>Springer Science + Business Media</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8620-5431</orcidid><orcidid>https://orcid.org/0000-0002-6745-9989</orcidid><orcidid>https://orcid.org/0000-0001-7062-1273</orcidid><orcidid>https://orcid.org/0000-0003-4124-3757</orcidid><orcidid>https://orcid.org/0000-0002-9312-7910</orcidid><orcidid>https://orcid.org/0000-0002-6349-8227</orcidid></search><sort><creationdate>20210401</creationdate><title>Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes</title><author>Rastetter, Edward B. ; Kling, George W. ; Shaver, Gaius R. ; Crump, Byron C. ; Gough, Laura ; Griffin, Kevin L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-f8ec990e786b8ceb084017b5ab80777a96f1c27b0f5e11888d18140947219f573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accumulation</topic><topic>Biomedical and Life Sciences</topic><topic>Ecology</topic><topic>Ecosystem assessment</topic><topic>Ecosystem recovery</topic><topic>Ecosystems</topic><topic>Environmental Management</topic><topic>Geoecology/Natural Processes</topic><topic>Hydrology/Water Resources</topic><topic>Life Sciences</topic><topic>Microorganisms</topic><topic>Nitrification</topic><topic>Nitrogen</topic><topic>Nitrogen cycle</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>Original Articles</topic><topic>Phases</topic><topic>Plant Sciences</topic><topic>Quasi-steady states</topic><topic>Recovery</topic><topic>Soil microbiology</topic><topic>Soil organic matter</topic><topic>Soils</topic><topic>Terrestrial ecosystems</topic><topic>Vegetation</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rastetter, Edward B.</creatorcontrib><creatorcontrib>Kling, George W.</creatorcontrib><creatorcontrib>Shaver, Gaius R.</creatorcontrib><creatorcontrib>Crump, Byron C.</creatorcontrib><creatorcontrib>Gough, Laura</creatorcontrib><creatorcontrib>Griffin, Kevin L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Ecosystems (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rastetter, Edward B.</au><au>Kling, George W.</au><au>Shaver, Gaius R.</au><au>Crump, Byron C.</au><au>Gough, Laura</au><au>Griffin, Kevin L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes</atitle><jtitle>Ecosystems (New York)</jtitle><stitle>Ecosystems</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>24</volume><issue>3</issue><spage>667</spage><epage>685</epage><pages>667-685</pages><issn>1432-9840</issn><eissn>1435-0629</eissn><abstract>We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation cannot take up nitrogen as fast as it is released from soil. In Phase 2, the ecosystem begins re-accumulating nitrogen and converges on a quasi-steady state in which vegetation and soil-microbial processes are in balance. In Phase 3, vegetation and soil-microbial processes remain in balance and the ecosystem slowly re-accumulates the remaining nitrogen. Phase 3 follows a balanced-accumulation trajectory along a continuum of quasi-steady states that approaches the true steady state asymptotically. We examine the effects of three ecosystem properties on recovery: openness of the nitrogen cycle, nitrogen distribution in and turnover between vegetation and soils, and the proportion of nitrogen losses that are in a refractory form. Openness exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high fraction of ecosystem nitrogen in vegetation, resulting from nitrogen turnover that is slow in vegetation but fast in soil, exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high proportion of nitrogen loss in refractory form mitigates Phase 1 nitrogen losses and speeds recovery in Phases 2 and 3. Application of our conceptual framework requires empirical recognition of the continuum of quasi-steady states constituting the balanced-accumulation trajectory and a distinction between the balanced-accumulation trajectory and the true steady state.</abstract><cop>New York</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s10021-020-00542-3</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8620-5431</orcidid><orcidid>https://orcid.org/0000-0002-6745-9989</orcidid><orcidid>https://orcid.org/0000-0001-7062-1273</orcidid><orcidid>https://orcid.org/0000-0003-4124-3757</orcidid><orcidid>https://orcid.org/0000-0002-9312-7910</orcidid><orcidid>https://orcid.org/0000-0002-6349-8227</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-9840 |
ispartof | Ecosystems (New York), 2021-04, Vol.24 (3), p.667-685 |
issn | 1432-9840 1435-0629 |
language | eng |
recordid | cdi_proquest_journals_2517102174 |
source | SpringerLink Journals |
subjects | Accumulation Biomedical and Life Sciences Ecology Ecosystem assessment Ecosystem recovery Ecosystems Environmental Management Geoecology/Natural Processes Hydrology/Water Resources Life Sciences Microorganisms Nitrification Nitrogen Nitrogen cycle Organic matter Organic soils Original Articles Phases Plant Sciences Quasi-steady states Recovery Soil microbiology Soil organic matter Soils Terrestrial ecosystems Vegetation Zoology |
title | Ecosystem Recovery from Disturbance is Constrained by N Cycle Openness, Vegetation-Soil N Distribution, Form of N Losses, and the Balance Between Vegetation and Soil-Microbial Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecosystem%20Recovery%20from%20Disturbance%20is%20Constrained%20by%20N%20Cycle%20Openness,%20Vegetation-Soil%20N%20Distribution,%20Form%20of%20N%20Losses,%20and%20the%20Balance%20Between%20Vegetation%20and%20Soil-Microbial%20Processes&rft.jtitle=Ecosystems%20(New%20York)&rft.au=Rastetter,%20Edward%20B.&rft.date=2021-04-01&rft.volume=24&rft.issue=3&rft.spage=667&rft.epage=685&rft.pages=667-685&rft.issn=1432-9840&rft.eissn=1435-0629&rft_id=info:doi/10.1007/s10021-020-00542-3&rft_dat=%3Cgale_proqu%3EA713729830%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2517102174&rft_id=info:pmid/&rft_galeid=A713729830&rft_jstor_id=48762002&rfr_iscdi=true |