Microfibrous Mesh and Polymer Damping of Micromachined Vibration Isolators
This article introduces the use of nickel (Ni) and copper (Cu) microfibrous meshes (MFMs) and Sorbothane and polydimethylsiloxane (PDMS) viscoelastic polymers to damp the dynamic response of a silicon micromachined vibration isolator (microisolator) for vibration reliability in mechanically harsh en...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2021-04, Vol.11 (4), p.543-556 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 556 |
---|---|
container_issue | 4 |
container_start_page | 543 |
container_title | IEEE transactions on components, packaging, and manufacturing technology (2011) |
container_volume | 11 |
creator | Bottenfield, Brent Bond, Arthur Gernt English, Brian A. Flowers, George T. Dean, Robert N. Adams, Mark L. |
description | This article introduces the use of nickel (Ni) and copper (Cu) microfibrous meshes (MFMs) and Sorbothane and polydimethylsiloxane (PDMS) viscoelastic polymers to damp the dynamic response of a silicon micromachined vibration isolator (microisolator) for vibration reliability in mechanically harsh environments. The 9\times 9 mm 2 microisolator is designed to house a small, packaged MEMS sensor to be isolated from the surrounding environment. Microisolators are fabricated from \langle 100\rangle silicon-on-insulator (SOI) wafers using standard lithography and deep reactive ion etching (DRIE) procedures. The MFMs are attached to the microisolators post-fabrication via solder attachment. We then investigate the transmissibility of the undamped and damped vibration microisolators using laser Doppler vibrometry. The peak transmissibility of the microisolator is significantly reduced for all four cases of polymer or MFM damping. Experimental results are compared to the FEA simulated transmissibility and the analytically calculated transmissibility. |
doi_str_mv | 10.1109/TCPMT.2021.3063854 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2517040015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9369315</ieee_id><sourcerecordid>2517040015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-bedda538caabab1cef1c7349b93994703f40078bee408b8b7e8c7f4a1d55133b3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EElXpH4CLJc4pdhw39hGVV1EreihcLdtZ01RNXOzk0H-P-1D3snuYb3Y0CN1TMqaUyKfVdLlYjXOS0zEjEyZ4cYUGOeWTjEnBry83J7doFOOGpOGClIQN0OeitsG72gTfR7yAuMa6rfDSb_cNBPyim13d_mLv8FHYaLuuW6jwTyJ0V_sWz6Lf6s6HeIdunN5GGJ33EH2_va6mH9n86302fZ5nNpe8ywxUleZMWK2NNtSCo7ZkhTSSSVmkUK4gpBQGoCDCCFOCsKUrNK04p4wZNkSPJ99d8H89xE5tfB_a9FLlnJYk4ZQnVX5SpdQxBnBqF-pGh72iRB1qU8fa1KE2da4tQQ8nqAaACyDZRLJk-Q-jTWlS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517040015</pqid></control><display><type>article</type><title>Microfibrous Mesh and Polymer Damping of Micromachined Vibration Isolators</title><source>IEEE Electronic Library (IEL)</source><creator>Bottenfield, Brent ; Bond, Arthur Gernt ; English, Brian A. ; Flowers, George T. ; Dean, Robert N. ; Adams, Mark L.</creator><creatorcontrib>Bottenfield, Brent ; Bond, Arthur Gernt ; English, Brian A. ; Flowers, George T. ; Dean, Robert N. ; Adams, Mark L.</creatorcontrib><description><![CDATA[This article introduces the use of nickel (Ni) and copper (Cu) microfibrous meshes (MFMs) and Sorbothane and polydimethylsiloxane (PDMS) viscoelastic polymers to damp the dynamic response of a silicon micromachined vibration isolator (microisolator) for vibration reliability in mechanically harsh environments. The <inline-formula> <tex-math notation="LaTeX">9\times 9 </tex-math></inline-formula> mm 2 microisolator is designed to house a small, packaged MEMS sensor to be isolated from the surrounding environment. Microisolators are fabricated from <inline-formula> <tex-math notation="LaTeX">\langle 100\rangle </tex-math></inline-formula> silicon-on-insulator (SOI) wafers using standard lithography and deep reactive ion etching (DRIE) procedures. The MFMs are attached to the microisolators post-fabrication via solder attachment. We then investigate the transmissibility of the undamped and damped vibration microisolators using laser Doppler vibrometry. The peak transmissibility of the microisolator is significantly reduced for all four cases of polymer or MFM damping. Experimental results are compared to the FEA simulated transmissibility and the analytically calculated transmissibility.]]></description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2021.3063854</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Copper ; Damping ; Dynamic response ; Electric shock ; Finite element method ; Harsh environments ; Isolators ; MEMS ; Microelectromechanical systems ; micromachines ; Micromachining ; Nickel ; Polydimethylsiloxane ; Polymers ; Q-factor ; Reactive ion etching ; Sensitivity ; sensor performance ; Silicon ; Vibration damping ; vibration isolation ; Vibration isolators ; Vibrations ; viscoelastic damping</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2021-04, Vol.11 (4), p.543-556</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-bedda538caabab1cef1c7349b93994703f40078bee408b8b7e8c7f4a1d55133b3</citedby><cites>FETCH-LOGICAL-c295t-bedda538caabab1cef1c7349b93994703f40078bee408b8b7e8c7f4a1d55133b3</cites><orcidid>0000-0001-5857-286X ; 0000-0002-7465-1055 ; 0000-0001-9493-7758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9369315$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9369315$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bottenfield, Brent</creatorcontrib><creatorcontrib>Bond, Arthur Gernt</creatorcontrib><creatorcontrib>English, Brian A.</creatorcontrib><creatorcontrib>Flowers, George T.</creatorcontrib><creatorcontrib>Dean, Robert N.</creatorcontrib><creatorcontrib>Adams, Mark L.</creatorcontrib><title>Microfibrous Mesh and Polymer Damping of Micromachined Vibration Isolators</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description><![CDATA[This article introduces the use of nickel (Ni) and copper (Cu) microfibrous meshes (MFMs) and Sorbothane and polydimethylsiloxane (PDMS) viscoelastic polymers to damp the dynamic response of a silicon micromachined vibration isolator (microisolator) for vibration reliability in mechanically harsh environments. The <inline-formula> <tex-math notation="LaTeX">9\times 9 </tex-math></inline-formula> mm 2 microisolator is designed to house a small, packaged MEMS sensor to be isolated from the surrounding environment. Microisolators are fabricated from <inline-formula> <tex-math notation="LaTeX">\langle 100\rangle </tex-math></inline-formula> silicon-on-insulator (SOI) wafers using standard lithography and deep reactive ion etching (DRIE) procedures. The MFMs are attached to the microisolators post-fabrication via solder attachment. We then investigate the transmissibility of the undamped and damped vibration microisolators using laser Doppler vibrometry. The peak transmissibility of the microisolator is significantly reduced for all four cases of polymer or MFM damping. Experimental results are compared to the FEA simulated transmissibility and the analytically calculated transmissibility.]]></description><subject>Acceleration</subject><subject>Copper</subject><subject>Damping</subject><subject>Dynamic response</subject><subject>Electric shock</subject><subject>Finite element method</subject><subject>Harsh environments</subject><subject>Isolators</subject><subject>MEMS</subject><subject>Microelectromechanical systems</subject><subject>micromachines</subject><subject>Micromachining</subject><subject>Nickel</subject><subject>Polydimethylsiloxane</subject><subject>Polymers</subject><subject>Q-factor</subject><subject>Reactive ion etching</subject><subject>Sensitivity</subject><subject>sensor performance</subject><subject>Silicon</subject><subject>Vibration damping</subject><subject>vibration isolation</subject><subject>Vibration isolators</subject><subject>Vibrations</subject><subject>viscoelastic damping</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EElXpH4CLJc4pdhw39hGVV1EreihcLdtZ01RNXOzk0H-P-1D3snuYb3Y0CN1TMqaUyKfVdLlYjXOS0zEjEyZ4cYUGOeWTjEnBry83J7doFOOGpOGClIQN0OeitsG72gTfR7yAuMa6rfDSb_cNBPyim13d_mLv8FHYaLuuW6jwTyJ0V_sWz6Lf6s6HeIdunN5GGJ33EH2_va6mH9n86302fZ5nNpe8ywxUleZMWK2NNtSCo7ZkhTSSSVmkUK4gpBQGoCDCCFOCsKUrNK04p4wZNkSPJ99d8H89xE5tfB_a9FLlnJYk4ZQnVX5SpdQxBnBqF-pGh72iRB1qU8fa1KE2da4tQQ8nqAaACyDZRLJk-Q-jTWlS</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Bottenfield, Brent</creator><creator>Bond, Arthur Gernt</creator><creator>English, Brian A.</creator><creator>Flowers, George T.</creator><creator>Dean, Robert N.</creator><creator>Adams, Mark L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5857-286X</orcidid><orcidid>https://orcid.org/0000-0002-7465-1055</orcidid><orcidid>https://orcid.org/0000-0001-9493-7758</orcidid></search><sort><creationdate>20210401</creationdate><title>Microfibrous Mesh and Polymer Damping of Micromachined Vibration Isolators</title><author>Bottenfield, Brent ; Bond, Arthur Gernt ; English, Brian A. ; Flowers, George T. ; Dean, Robert N. ; Adams, Mark L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-bedda538caabab1cef1c7349b93994703f40078bee408b8b7e8c7f4a1d55133b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Copper</topic><topic>Damping</topic><topic>Dynamic response</topic><topic>Electric shock</topic><topic>Finite element method</topic><topic>Harsh environments</topic><topic>Isolators</topic><topic>MEMS</topic><topic>Microelectromechanical systems</topic><topic>micromachines</topic><topic>Micromachining</topic><topic>Nickel</topic><topic>Polydimethylsiloxane</topic><topic>Polymers</topic><topic>Q-factor</topic><topic>Reactive ion etching</topic><topic>Sensitivity</topic><topic>sensor performance</topic><topic>Silicon</topic><topic>Vibration damping</topic><topic>vibration isolation</topic><topic>Vibration isolators</topic><topic>Vibrations</topic><topic>viscoelastic damping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bottenfield, Brent</creatorcontrib><creatorcontrib>Bond, Arthur Gernt</creatorcontrib><creatorcontrib>English, Brian A.</creatorcontrib><creatorcontrib>Flowers, George T.</creatorcontrib><creatorcontrib>Dean, Robert N.</creatorcontrib><creatorcontrib>Adams, Mark L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bottenfield, Brent</au><au>Bond, Arthur Gernt</au><au>English, Brian A.</au><au>Flowers, George T.</au><au>Dean, Robert N.</au><au>Adams, Mark L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfibrous Mesh and Polymer Damping of Micromachined Vibration Isolators</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><spage>543</spage><epage>556</epage><pages>543-556</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract><![CDATA[This article introduces the use of nickel (Ni) and copper (Cu) microfibrous meshes (MFMs) and Sorbothane and polydimethylsiloxane (PDMS) viscoelastic polymers to damp the dynamic response of a silicon micromachined vibration isolator (microisolator) for vibration reliability in mechanically harsh environments. The <inline-formula> <tex-math notation="LaTeX">9\times 9 </tex-math></inline-formula> mm 2 microisolator is designed to house a small, packaged MEMS sensor to be isolated from the surrounding environment. Microisolators are fabricated from <inline-formula> <tex-math notation="LaTeX">\langle 100\rangle </tex-math></inline-formula> silicon-on-insulator (SOI) wafers using standard lithography and deep reactive ion etching (DRIE) procedures. The MFMs are attached to the microisolators post-fabrication via solder attachment. We then investigate the transmissibility of the undamped and damped vibration microisolators using laser Doppler vibrometry. The peak transmissibility of the microisolator is significantly reduced for all four cases of polymer or MFM damping. Experimental results are compared to the FEA simulated transmissibility and the analytically calculated transmissibility.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2021.3063854</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5857-286X</orcidid><orcidid>https://orcid.org/0000-0002-7465-1055</orcidid><orcidid>https://orcid.org/0000-0001-9493-7758</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3950 |
ispartof | IEEE transactions on components, packaging, and manufacturing technology (2011), 2021-04, Vol.11 (4), p.543-556 |
issn | 2156-3950 2156-3985 |
language | eng |
recordid | cdi_proquest_journals_2517040015 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Copper Damping Dynamic response Electric shock Finite element method Harsh environments Isolators MEMS Microelectromechanical systems micromachines Micromachining Nickel Polydimethylsiloxane Polymers Q-factor Reactive ion etching Sensitivity sensor performance Silicon Vibration damping vibration isolation Vibration isolators Vibrations viscoelastic damping |
title | Microfibrous Mesh and Polymer Damping of Micromachined Vibration Isolators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfibrous%20Mesh%20and%20Polymer%20Damping%20of%20Micromachined%20Vibration%20Isolators&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Bottenfield,%20Brent&rft.date=2021-04-01&rft.volume=11&rft.issue=4&rft.spage=543&rft.epage=556&rft.pages=543-556&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2021.3063854&rft_dat=%3Cproquest_RIE%3E2517040015%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2517040015&rft_id=info:pmid/&rft_ieee_id=9369315&rfr_iscdi=true |