Microfibrous Mesh and Polymer Damping of Micromachined Vibration Isolators

This article introduces the use of nickel (Ni) and copper (Cu) microfibrous meshes (MFMs) and Sorbothane and polydimethylsiloxane (PDMS) viscoelastic polymers to damp the dynamic response of a silicon micromachined vibration isolator (microisolator) for vibration reliability in mechanically harsh en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2021-04, Vol.11 (4), p.543-556
Hauptverfasser: Bottenfield, Brent, Bond, Arthur Gernt, English, Brian A., Flowers, George T., Dean, Robert N., Adams, Mark L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 556
container_issue 4
container_start_page 543
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume 11
creator Bottenfield, Brent
Bond, Arthur Gernt
English, Brian A.
Flowers, George T.
Dean, Robert N.
Adams, Mark L.
description This article introduces the use of nickel (Ni) and copper (Cu) microfibrous meshes (MFMs) and Sorbothane and polydimethylsiloxane (PDMS) viscoelastic polymers to damp the dynamic response of a silicon micromachined vibration isolator (microisolator) for vibration reliability in mechanically harsh environments. The 9\times 9 mm 2 microisolator is designed to house a small, packaged MEMS sensor to be isolated from the surrounding environment. Microisolators are fabricated from \langle 100\rangle silicon-on-insulator (SOI) wafers using standard lithography and deep reactive ion etching (DRIE) procedures. The MFMs are attached to the microisolators post-fabrication via solder attachment. We then investigate the transmissibility of the undamped and damped vibration microisolators using laser Doppler vibrometry. The peak transmissibility of the microisolator is significantly reduced for all four cases of polymer or MFM damping. Experimental results are compared to the FEA simulated transmissibility and the analytically calculated transmissibility.
doi_str_mv 10.1109/TCPMT.2021.3063854
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2517040015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9369315</ieee_id><sourcerecordid>2517040015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-bedda538caabab1cef1c7349b93994703f40078bee408b8b7e8c7f4a1d55133b3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EElXpH4CLJc4pdhw39hGVV1EreihcLdtZ01RNXOzk0H-P-1D3snuYb3Y0CN1TMqaUyKfVdLlYjXOS0zEjEyZ4cYUGOeWTjEnBry83J7doFOOGpOGClIQN0OeitsG72gTfR7yAuMa6rfDSb_cNBPyim13d_mLv8FHYaLuuW6jwTyJ0V_sWz6Lf6s6HeIdunN5GGJ33EH2_va6mH9n86302fZ5nNpe8ywxUleZMWK2NNtSCo7ZkhTSSSVmkUK4gpBQGoCDCCFOCsKUrNK04p4wZNkSPJ99d8H89xE5tfB_a9FLlnJYk4ZQnVX5SpdQxBnBqF-pGh72iRB1qU8fa1KE2da4tQQ8nqAaACyDZRLJk-Q-jTWlS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517040015</pqid></control><display><type>article</type><title>Microfibrous Mesh and Polymer Damping of Micromachined Vibration Isolators</title><source>IEEE Electronic Library (IEL)</source><creator>Bottenfield, Brent ; Bond, Arthur Gernt ; English, Brian A. ; Flowers, George T. ; Dean, Robert N. ; Adams, Mark L.</creator><creatorcontrib>Bottenfield, Brent ; Bond, Arthur Gernt ; English, Brian A. ; Flowers, George T. ; Dean, Robert N. ; Adams, Mark L.</creatorcontrib><description><![CDATA[This article introduces the use of nickel (Ni) and copper (Cu) microfibrous meshes (MFMs) and Sorbothane and polydimethylsiloxane (PDMS) viscoelastic polymers to damp the dynamic response of a silicon micromachined vibration isolator (microisolator) for vibration reliability in mechanically harsh environments. The <inline-formula> <tex-math notation="LaTeX">9\times 9 </tex-math></inline-formula> mm 2 microisolator is designed to house a small, packaged MEMS sensor to be isolated from the surrounding environment. Microisolators are fabricated from <inline-formula> <tex-math notation="LaTeX">\langle 100\rangle </tex-math></inline-formula> silicon-on-insulator (SOI) wafers using standard lithography and deep reactive ion etching (DRIE) procedures. The MFMs are attached to the microisolators post-fabrication via solder attachment. We then investigate the transmissibility of the undamped and damped vibration microisolators using laser Doppler vibrometry. The peak transmissibility of the microisolator is significantly reduced for all four cases of polymer or MFM damping. Experimental results are compared to the FEA simulated transmissibility and the analytically calculated transmissibility.]]></description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2021.3063854</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Copper ; Damping ; Dynamic response ; Electric shock ; Finite element method ; Harsh environments ; Isolators ; MEMS ; Microelectromechanical systems ; micromachines ; Micromachining ; Nickel ; Polydimethylsiloxane ; Polymers ; Q-factor ; Reactive ion etching ; Sensitivity ; sensor performance ; Silicon ; Vibration damping ; vibration isolation ; Vibration isolators ; Vibrations ; viscoelastic damping</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2021-04, Vol.11 (4), p.543-556</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-bedda538caabab1cef1c7349b93994703f40078bee408b8b7e8c7f4a1d55133b3</citedby><cites>FETCH-LOGICAL-c295t-bedda538caabab1cef1c7349b93994703f40078bee408b8b7e8c7f4a1d55133b3</cites><orcidid>0000-0001-5857-286X ; 0000-0002-7465-1055 ; 0000-0001-9493-7758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9369315$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9369315$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bottenfield, Brent</creatorcontrib><creatorcontrib>Bond, Arthur Gernt</creatorcontrib><creatorcontrib>English, Brian A.</creatorcontrib><creatorcontrib>Flowers, George T.</creatorcontrib><creatorcontrib>Dean, Robert N.</creatorcontrib><creatorcontrib>Adams, Mark L.</creatorcontrib><title>Microfibrous Mesh and Polymer Damping of Micromachined Vibration Isolators</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description><![CDATA[This article introduces the use of nickel (Ni) and copper (Cu) microfibrous meshes (MFMs) and Sorbothane and polydimethylsiloxane (PDMS) viscoelastic polymers to damp the dynamic response of a silicon micromachined vibration isolator (microisolator) for vibration reliability in mechanically harsh environments. The <inline-formula> <tex-math notation="LaTeX">9\times 9 </tex-math></inline-formula> mm 2 microisolator is designed to house a small, packaged MEMS sensor to be isolated from the surrounding environment. Microisolators are fabricated from <inline-formula> <tex-math notation="LaTeX">\langle 100\rangle </tex-math></inline-formula> silicon-on-insulator (SOI) wafers using standard lithography and deep reactive ion etching (DRIE) procedures. The MFMs are attached to the microisolators post-fabrication via solder attachment. We then investigate the transmissibility of the undamped and damped vibration microisolators using laser Doppler vibrometry. The peak transmissibility of the microisolator is significantly reduced for all four cases of polymer or MFM damping. Experimental results are compared to the FEA simulated transmissibility and the analytically calculated transmissibility.]]></description><subject>Acceleration</subject><subject>Copper</subject><subject>Damping</subject><subject>Dynamic response</subject><subject>Electric shock</subject><subject>Finite element method</subject><subject>Harsh environments</subject><subject>Isolators</subject><subject>MEMS</subject><subject>Microelectromechanical systems</subject><subject>micromachines</subject><subject>Micromachining</subject><subject>Nickel</subject><subject>Polydimethylsiloxane</subject><subject>Polymers</subject><subject>Q-factor</subject><subject>Reactive ion etching</subject><subject>Sensitivity</subject><subject>sensor performance</subject><subject>Silicon</subject><subject>Vibration damping</subject><subject>vibration isolation</subject><subject>Vibration isolators</subject><subject>Vibrations</subject><subject>viscoelastic damping</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EElXpH4CLJc4pdhw39hGVV1EreihcLdtZ01RNXOzk0H-P-1D3snuYb3Y0CN1TMqaUyKfVdLlYjXOS0zEjEyZ4cYUGOeWTjEnBry83J7doFOOGpOGClIQN0OeitsG72gTfR7yAuMa6rfDSb_cNBPyim13d_mLv8FHYaLuuW6jwTyJ0V_sWz6Lf6s6HeIdunN5GGJ33EH2_va6mH9n86302fZ5nNpe8ywxUleZMWK2NNtSCo7ZkhTSSSVmkUK4gpBQGoCDCCFOCsKUrNK04p4wZNkSPJ99d8H89xE5tfB_a9FLlnJYk4ZQnVX5SpdQxBnBqF-pGh72iRB1qU8fa1KE2da4tQQ8nqAaACyDZRLJk-Q-jTWlS</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Bottenfield, Brent</creator><creator>Bond, Arthur Gernt</creator><creator>English, Brian A.</creator><creator>Flowers, George T.</creator><creator>Dean, Robert N.</creator><creator>Adams, Mark L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5857-286X</orcidid><orcidid>https://orcid.org/0000-0002-7465-1055</orcidid><orcidid>https://orcid.org/0000-0001-9493-7758</orcidid></search><sort><creationdate>20210401</creationdate><title>Microfibrous Mesh and Polymer Damping of Micromachined Vibration Isolators</title><author>Bottenfield, Brent ; Bond, Arthur Gernt ; English, Brian A. ; Flowers, George T. ; Dean, Robert N. ; Adams, Mark L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-bedda538caabab1cef1c7349b93994703f40078bee408b8b7e8c7f4a1d55133b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Copper</topic><topic>Damping</topic><topic>Dynamic response</topic><topic>Electric shock</topic><topic>Finite element method</topic><topic>Harsh environments</topic><topic>Isolators</topic><topic>MEMS</topic><topic>Microelectromechanical systems</topic><topic>micromachines</topic><topic>Micromachining</topic><topic>Nickel</topic><topic>Polydimethylsiloxane</topic><topic>Polymers</topic><topic>Q-factor</topic><topic>Reactive ion etching</topic><topic>Sensitivity</topic><topic>sensor performance</topic><topic>Silicon</topic><topic>Vibration damping</topic><topic>vibration isolation</topic><topic>Vibration isolators</topic><topic>Vibrations</topic><topic>viscoelastic damping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bottenfield, Brent</creatorcontrib><creatorcontrib>Bond, Arthur Gernt</creatorcontrib><creatorcontrib>English, Brian A.</creatorcontrib><creatorcontrib>Flowers, George T.</creatorcontrib><creatorcontrib>Dean, Robert N.</creatorcontrib><creatorcontrib>Adams, Mark L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bottenfield, Brent</au><au>Bond, Arthur Gernt</au><au>English, Brian A.</au><au>Flowers, George T.</au><au>Dean, Robert N.</au><au>Adams, Mark L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfibrous Mesh and Polymer Damping of Micromachined Vibration Isolators</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><spage>543</spage><epage>556</epage><pages>543-556</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract><![CDATA[This article introduces the use of nickel (Ni) and copper (Cu) microfibrous meshes (MFMs) and Sorbothane and polydimethylsiloxane (PDMS) viscoelastic polymers to damp the dynamic response of a silicon micromachined vibration isolator (microisolator) for vibration reliability in mechanically harsh environments. The <inline-formula> <tex-math notation="LaTeX">9\times 9 </tex-math></inline-formula> mm 2 microisolator is designed to house a small, packaged MEMS sensor to be isolated from the surrounding environment. Microisolators are fabricated from <inline-formula> <tex-math notation="LaTeX">\langle 100\rangle </tex-math></inline-formula> silicon-on-insulator (SOI) wafers using standard lithography and deep reactive ion etching (DRIE) procedures. The MFMs are attached to the microisolators post-fabrication via solder attachment. We then investigate the transmissibility of the undamped and damped vibration microisolators using laser Doppler vibrometry. The peak transmissibility of the microisolator is significantly reduced for all four cases of polymer or MFM damping. Experimental results are compared to the FEA simulated transmissibility and the analytically calculated transmissibility.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2021.3063854</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5857-286X</orcidid><orcidid>https://orcid.org/0000-0002-7465-1055</orcidid><orcidid>https://orcid.org/0000-0001-9493-7758</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2021-04, Vol.11 (4), p.543-556
issn 2156-3950
2156-3985
language eng
recordid cdi_proquest_journals_2517040015
source IEEE Electronic Library (IEL)
subjects Acceleration
Copper
Damping
Dynamic response
Electric shock
Finite element method
Harsh environments
Isolators
MEMS
Microelectromechanical systems
micromachines
Micromachining
Nickel
Polydimethylsiloxane
Polymers
Q-factor
Reactive ion etching
Sensitivity
sensor performance
Silicon
Vibration damping
vibration isolation
Vibration isolators
Vibrations
viscoelastic damping
title Microfibrous Mesh and Polymer Damping of Micromachined Vibration Isolators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfibrous%20Mesh%20and%20Polymer%20Damping%20of%20Micromachined%20Vibration%20Isolators&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Bottenfield,%20Brent&rft.date=2021-04-01&rft.volume=11&rft.issue=4&rft.spage=543&rft.epage=556&rft.pages=543-556&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2021.3063854&rft_dat=%3Cproquest_RIE%3E2517040015%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2517040015&rft_id=info:pmid/&rft_ieee_id=9369315&rfr_iscdi=true