Water wave optimization algorithm for autonomous underwater vehicle path planning problem

In this paper, a water wave optimization (WWO) algorithm is proposed to solve the autonomous underwater vehicle (AUV) path planning problem to obtain an optimal or near-optimal path in the marine environment. Path planning is a prerequisite for the realization of submarine reconnaissance, surveillan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2021-01, Vol.40 (5), p.9127-9141
Hauptverfasser: Yan, Zheping, Zhang, Jinzhong, Zeng, Jia, Tang, Jialing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9141
container_issue 5
container_start_page 9127
container_title Journal of intelligent & fuzzy systems
container_volume 40
creator Yan, Zheping
Zhang, Jinzhong
Zeng, Jia
Tang, Jialing
description In this paper, a water wave optimization (WWO) algorithm is proposed to solve the autonomous underwater vehicle (AUV) path planning problem to obtain an optimal or near-optimal path in the marine environment. Path planning is a prerequisite for the realization of submarine reconnaissance, surveillance, combat and other underwater tasks. The WWO algorithm based on shallow wave theory is a novel evolutionary algorithm that mimics wave motions containing propagation, refraction and breaking to obtain the global optimization solution. The WWO algorithm not only avoids jumps out of the local optimum and premature convergence but also has a faster convergence speed and higher calculation accuracy. To verify the effectiveness and feasibility, the WWO algorithm is applied to solve the randomly generated threat areas and generated fixed threat areas. Compared with other algorithms, the WWO algorithm can effectively balance exploration and exploitation to avoid threat areas and reach the intended target with minimum fuel costs. The experimental results demonstrate that the WWO algorithm has better optimization performance and is robust.
doi_str_mv 10.3233/JIFS-201544
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516969834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516969834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-4b74dea9fddcbbe4367ed1870f7a9fa35fe8c243d9956cf33fedbe35bfbd734c3</originalsourceid><addsrcrecordid>eNotkFFLwzAUhYMoOKdP_oGAj1JNmjRtH2W4ORn4oCI-haS52Trapibphv56O-fTPVzOPefyIXRNyR1LGbt_Xs5fk5TQjPMTNKFFniVFKfLTURPBE5pycY4uQtgSQvMsJRP0-aEieLxXO8Cuj3Vb_6hYuw6rZu18HTctts5jNUTXudYNAQ-dAb__u9rBpq4awL2KG9w3quvqbo1773QD7SU6s6oJcPU_p-h9_vg2e0pWL4vl7GGVVKmgMeE65wZUaY2ptAbORA5m_JzYfFwqllkoqpQzU5aZqCxjFowGlmmrTc54xabo5pg79n4NEKLcusF3Y6VMMypKURaMj67bo6vyLgQPVva-bpX_lpTIAzt5YCeP7NgvjHtkoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516969834</pqid></control><display><type>article</type><title>Water wave optimization algorithm for autonomous underwater vehicle path planning problem</title><source>Business Source Complete</source><creator>Yan, Zheping ; Zhang, Jinzhong ; Zeng, Jia ; Tang, Jialing</creator><creatorcontrib>Yan, Zheping ; Zhang, Jinzhong ; Zeng, Jia ; Tang, Jialing</creatorcontrib><description>In this paper, a water wave optimization (WWO) algorithm is proposed to solve the autonomous underwater vehicle (AUV) path planning problem to obtain an optimal or near-optimal path in the marine environment. Path planning is a prerequisite for the realization of submarine reconnaissance, surveillance, combat and other underwater tasks. The WWO algorithm based on shallow wave theory is a novel evolutionary algorithm that mimics wave motions containing propagation, refraction and breaking to obtain the global optimization solution. The WWO algorithm not only avoids jumps out of the local optimum and premature convergence but also has a faster convergence speed and higher calculation accuracy. To verify the effectiveness and feasibility, the WWO algorithm is applied to solve the randomly generated threat areas and generated fixed threat areas. Compared with other algorithms, the WWO algorithm can effectively balance exploration and exploitation to avoid threat areas and reach the intended target with minimum fuel costs. The experimental results demonstrate that the WWO algorithm has better optimization performance and is robust.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-201544</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Autonomous underwater vehicles ; Convergence ; Evolutionary algorithms ; Global optimization ; Marine environment ; Optimization ; Path planning ; Water waves ; Wave propagation</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2021-01, Vol.40 (5), p.9127-9141</ispartof><rights>Copyright IOS Press BV 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-4b74dea9fddcbbe4367ed1870f7a9fa35fe8c243d9956cf33fedbe35bfbd734c3</citedby><cites>FETCH-LOGICAL-c261t-4b74dea9fddcbbe4367ed1870f7a9fa35fe8c243d9956cf33fedbe35bfbd734c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yan, Zheping</creatorcontrib><creatorcontrib>Zhang, Jinzhong</creatorcontrib><creatorcontrib>Zeng, Jia</creatorcontrib><creatorcontrib>Tang, Jialing</creatorcontrib><title>Water wave optimization algorithm for autonomous underwater vehicle path planning problem</title><title>Journal of intelligent &amp; fuzzy systems</title><description>In this paper, a water wave optimization (WWO) algorithm is proposed to solve the autonomous underwater vehicle (AUV) path planning problem to obtain an optimal or near-optimal path in the marine environment. Path planning is a prerequisite for the realization of submarine reconnaissance, surveillance, combat and other underwater tasks. The WWO algorithm based on shallow wave theory is a novel evolutionary algorithm that mimics wave motions containing propagation, refraction and breaking to obtain the global optimization solution. The WWO algorithm not only avoids jumps out of the local optimum and premature convergence but also has a faster convergence speed and higher calculation accuracy. To verify the effectiveness and feasibility, the WWO algorithm is applied to solve the randomly generated threat areas and generated fixed threat areas. Compared with other algorithms, the WWO algorithm can effectively balance exploration and exploitation to avoid threat areas and reach the intended target with minimum fuel costs. The experimental results demonstrate that the WWO algorithm has better optimization performance and is robust.</description><subject>Algorithms</subject><subject>Autonomous underwater vehicles</subject><subject>Convergence</subject><subject>Evolutionary algorithms</subject><subject>Global optimization</subject><subject>Marine environment</subject><subject>Optimization</subject><subject>Path planning</subject><subject>Water waves</subject><subject>Wave propagation</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkFFLwzAUhYMoOKdP_oGAj1JNmjRtH2W4ORn4oCI-haS52Trapibphv56O-fTPVzOPefyIXRNyR1LGbt_Xs5fk5TQjPMTNKFFniVFKfLTURPBE5pycY4uQtgSQvMsJRP0-aEieLxXO8Cuj3Vb_6hYuw6rZu18HTctts5jNUTXudYNAQ-dAb__u9rBpq4awL2KG9w3quvqbo1773QD7SU6s6oJcPU_p-h9_vg2e0pWL4vl7GGVVKmgMeE65wZUaY2ptAbORA5m_JzYfFwqllkoqpQzU5aZqCxjFowGlmmrTc54xabo5pg79n4NEKLcusF3Y6VMMypKURaMj67bo6vyLgQPVva-bpX_lpTIAzt5YCeP7NgvjHtkoA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Yan, Zheping</creator><creator>Zhang, Jinzhong</creator><creator>Zeng, Jia</creator><creator>Tang, Jialing</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210101</creationdate><title>Water wave optimization algorithm for autonomous underwater vehicle path planning problem</title><author>Yan, Zheping ; Zhang, Jinzhong ; Zeng, Jia ; Tang, Jialing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-4b74dea9fddcbbe4367ed1870f7a9fa35fe8c243d9956cf33fedbe35bfbd734c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Autonomous underwater vehicles</topic><topic>Convergence</topic><topic>Evolutionary algorithms</topic><topic>Global optimization</topic><topic>Marine environment</topic><topic>Optimization</topic><topic>Path planning</topic><topic>Water waves</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Zheping</creatorcontrib><creatorcontrib>Zhang, Jinzhong</creatorcontrib><creatorcontrib>Zeng, Jia</creatorcontrib><creatorcontrib>Tang, Jialing</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Zheping</au><au>Zhang, Jinzhong</au><au>Zeng, Jia</au><au>Tang, Jialing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water wave optimization algorithm for autonomous underwater vehicle path planning problem</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>40</volume><issue>5</issue><spage>9127</spage><epage>9141</epage><pages>9127-9141</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>In this paper, a water wave optimization (WWO) algorithm is proposed to solve the autonomous underwater vehicle (AUV) path planning problem to obtain an optimal or near-optimal path in the marine environment. Path planning is a prerequisite for the realization of submarine reconnaissance, surveillance, combat and other underwater tasks. The WWO algorithm based on shallow wave theory is a novel evolutionary algorithm that mimics wave motions containing propagation, refraction and breaking to obtain the global optimization solution. The WWO algorithm not only avoids jumps out of the local optimum and premature convergence but also has a faster convergence speed and higher calculation accuracy. To verify the effectiveness and feasibility, the WWO algorithm is applied to solve the randomly generated threat areas and generated fixed threat areas. Compared with other algorithms, the WWO algorithm can effectively balance exploration and exploitation to avoid threat areas and reach the intended target with minimum fuel costs. The experimental results demonstrate that the WWO algorithm has better optimization performance and is robust.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-201544</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2021-01, Vol.40 (5), p.9127-9141
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2516969834
source Business Source Complete
subjects Algorithms
Autonomous underwater vehicles
Convergence
Evolutionary algorithms
Global optimization
Marine environment
Optimization
Path planning
Water waves
Wave propagation
title Water wave optimization algorithm for autonomous underwater vehicle path planning problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20wave%20optimization%20algorithm%20for%20autonomous%20underwater%20vehicle%20path%20planning%20problem&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Yan,%20Zheping&rft.date=2021-01-01&rft.volume=40&rft.issue=5&rft.spage=9127&rft.epage=9141&rft.pages=9127-9141&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-201544&rft_dat=%3Cproquest_cross%3E2516969834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516969834&rft_id=info:pmid/&rfr_iscdi=true