Water wave optimization algorithm for autonomous underwater vehicle path planning problem
In this paper, a water wave optimization (WWO) algorithm is proposed to solve the autonomous underwater vehicle (AUV) path planning problem to obtain an optimal or near-optimal path in the marine environment. Path planning is a prerequisite for the realization of submarine reconnaissance, surveillan...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2021-01, Vol.40 (5), p.9127-9141 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9141 |
---|---|
container_issue | 5 |
container_start_page | 9127 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 40 |
creator | Yan, Zheping Zhang, Jinzhong Zeng, Jia Tang, Jialing |
description | In this paper, a water wave optimization (WWO) algorithm is proposed to solve the autonomous underwater vehicle (AUV) path planning problem to obtain an optimal or near-optimal path in the marine environment. Path planning is a prerequisite for the realization of submarine reconnaissance, surveillance, combat and other underwater tasks. The WWO algorithm based on shallow wave theory is a novel evolutionary algorithm that mimics wave motions containing propagation, refraction and breaking to obtain the global optimization solution. The WWO algorithm not only avoids jumps out of the local optimum and premature convergence but also has a faster convergence speed and higher calculation accuracy. To verify the effectiveness and feasibility, the WWO algorithm is applied to solve the randomly generated threat areas and generated fixed threat areas. Compared with other algorithms, the WWO algorithm can effectively balance exploration and exploitation to avoid threat areas and reach the intended target with minimum fuel costs. The experimental results demonstrate that the WWO algorithm has better optimization performance and is robust. |
doi_str_mv | 10.3233/JIFS-201544 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516969834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516969834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-4b74dea9fddcbbe4367ed1870f7a9fa35fe8c243d9956cf33fedbe35bfbd734c3</originalsourceid><addsrcrecordid>eNotkFFLwzAUhYMoOKdP_oGAj1JNmjRtH2W4ORn4oCI-haS52Trapibphv56O-fTPVzOPefyIXRNyR1LGbt_Xs5fk5TQjPMTNKFFniVFKfLTURPBE5pycY4uQtgSQvMsJRP0-aEieLxXO8Cuj3Vb_6hYuw6rZu18HTctts5jNUTXudYNAQ-dAb__u9rBpq4awL2KG9w3quvqbo1773QD7SU6s6oJcPU_p-h9_vg2e0pWL4vl7GGVVKmgMeE65wZUaY2ptAbORA5m_JzYfFwqllkoqpQzU5aZqCxjFowGlmmrTc54xabo5pg79n4NEKLcusF3Y6VMMypKURaMj67bo6vyLgQPVva-bpX_lpTIAzt5YCeP7NgvjHtkoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516969834</pqid></control><display><type>article</type><title>Water wave optimization algorithm for autonomous underwater vehicle path planning problem</title><source>Business Source Complete</source><creator>Yan, Zheping ; Zhang, Jinzhong ; Zeng, Jia ; Tang, Jialing</creator><creatorcontrib>Yan, Zheping ; Zhang, Jinzhong ; Zeng, Jia ; Tang, Jialing</creatorcontrib><description>In this paper, a water wave optimization (WWO) algorithm is proposed to solve the autonomous underwater vehicle (AUV) path planning problem to obtain an optimal or near-optimal path in the marine environment. Path planning is a prerequisite for the realization of submarine reconnaissance, surveillance, combat and other underwater tasks. The WWO algorithm based on shallow wave theory is a novel evolutionary algorithm that mimics wave motions containing propagation, refraction and breaking to obtain the global optimization solution. The WWO algorithm not only avoids jumps out of the local optimum and premature convergence but also has a faster convergence speed and higher calculation accuracy. To verify the effectiveness and feasibility, the WWO algorithm is applied to solve the randomly generated threat areas and generated fixed threat areas. Compared with other algorithms, the WWO algorithm can effectively balance exploration and exploitation to avoid threat areas and reach the intended target with minimum fuel costs. The experimental results demonstrate that the WWO algorithm has better optimization performance and is robust.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-201544</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Autonomous underwater vehicles ; Convergence ; Evolutionary algorithms ; Global optimization ; Marine environment ; Optimization ; Path planning ; Water waves ; Wave propagation</subject><ispartof>Journal of intelligent & fuzzy systems, 2021-01, Vol.40 (5), p.9127-9141</ispartof><rights>Copyright IOS Press BV 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-4b74dea9fddcbbe4367ed1870f7a9fa35fe8c243d9956cf33fedbe35bfbd734c3</citedby><cites>FETCH-LOGICAL-c261t-4b74dea9fddcbbe4367ed1870f7a9fa35fe8c243d9956cf33fedbe35bfbd734c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yan, Zheping</creatorcontrib><creatorcontrib>Zhang, Jinzhong</creatorcontrib><creatorcontrib>Zeng, Jia</creatorcontrib><creatorcontrib>Tang, Jialing</creatorcontrib><title>Water wave optimization algorithm for autonomous underwater vehicle path planning problem</title><title>Journal of intelligent & fuzzy systems</title><description>In this paper, a water wave optimization (WWO) algorithm is proposed to solve the autonomous underwater vehicle (AUV) path planning problem to obtain an optimal or near-optimal path in the marine environment. Path planning is a prerequisite for the realization of submarine reconnaissance, surveillance, combat and other underwater tasks. The WWO algorithm based on shallow wave theory is a novel evolutionary algorithm that mimics wave motions containing propagation, refraction and breaking to obtain the global optimization solution. The WWO algorithm not only avoids jumps out of the local optimum and premature convergence but also has a faster convergence speed and higher calculation accuracy. To verify the effectiveness and feasibility, the WWO algorithm is applied to solve the randomly generated threat areas and generated fixed threat areas. Compared with other algorithms, the WWO algorithm can effectively balance exploration and exploitation to avoid threat areas and reach the intended target with minimum fuel costs. The experimental results demonstrate that the WWO algorithm has better optimization performance and is robust.</description><subject>Algorithms</subject><subject>Autonomous underwater vehicles</subject><subject>Convergence</subject><subject>Evolutionary algorithms</subject><subject>Global optimization</subject><subject>Marine environment</subject><subject>Optimization</subject><subject>Path planning</subject><subject>Water waves</subject><subject>Wave propagation</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkFFLwzAUhYMoOKdP_oGAj1JNmjRtH2W4ORn4oCI-haS52Trapibphv56O-fTPVzOPefyIXRNyR1LGbt_Xs5fk5TQjPMTNKFFniVFKfLTURPBE5pycY4uQtgSQvMsJRP0-aEieLxXO8Cuj3Vb_6hYuw6rZu18HTctts5jNUTXudYNAQ-dAb__u9rBpq4awL2KG9w3quvqbo1773QD7SU6s6oJcPU_p-h9_vg2e0pWL4vl7GGVVKmgMeE65wZUaY2ptAbORA5m_JzYfFwqllkoqpQzU5aZqCxjFowGlmmrTc54xabo5pg79n4NEKLcusF3Y6VMMypKURaMj67bo6vyLgQPVva-bpX_lpTIAzt5YCeP7NgvjHtkoA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Yan, Zheping</creator><creator>Zhang, Jinzhong</creator><creator>Zeng, Jia</creator><creator>Tang, Jialing</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210101</creationdate><title>Water wave optimization algorithm for autonomous underwater vehicle path planning problem</title><author>Yan, Zheping ; Zhang, Jinzhong ; Zeng, Jia ; Tang, Jialing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-4b74dea9fddcbbe4367ed1870f7a9fa35fe8c243d9956cf33fedbe35bfbd734c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Autonomous underwater vehicles</topic><topic>Convergence</topic><topic>Evolutionary algorithms</topic><topic>Global optimization</topic><topic>Marine environment</topic><topic>Optimization</topic><topic>Path planning</topic><topic>Water waves</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Zheping</creatorcontrib><creatorcontrib>Zhang, Jinzhong</creatorcontrib><creatorcontrib>Zeng, Jia</creatorcontrib><creatorcontrib>Tang, Jialing</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Zheping</au><au>Zhang, Jinzhong</au><au>Zeng, Jia</au><au>Tang, Jialing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water wave optimization algorithm for autonomous underwater vehicle path planning problem</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>40</volume><issue>5</issue><spage>9127</spage><epage>9141</epage><pages>9127-9141</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>In this paper, a water wave optimization (WWO) algorithm is proposed to solve the autonomous underwater vehicle (AUV) path planning problem to obtain an optimal or near-optimal path in the marine environment. Path planning is a prerequisite for the realization of submarine reconnaissance, surveillance, combat and other underwater tasks. The WWO algorithm based on shallow wave theory is a novel evolutionary algorithm that mimics wave motions containing propagation, refraction and breaking to obtain the global optimization solution. The WWO algorithm not only avoids jumps out of the local optimum and premature convergence but also has a faster convergence speed and higher calculation accuracy. To verify the effectiveness and feasibility, the WWO algorithm is applied to solve the randomly generated threat areas and generated fixed threat areas. Compared with other algorithms, the WWO algorithm can effectively balance exploration and exploitation to avoid threat areas and reach the intended target with minimum fuel costs. The experimental results demonstrate that the WWO algorithm has better optimization performance and is robust.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-201544</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2021-01, Vol.40 (5), p.9127-9141 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2516969834 |
source | Business Source Complete |
subjects | Algorithms Autonomous underwater vehicles Convergence Evolutionary algorithms Global optimization Marine environment Optimization Path planning Water waves Wave propagation |
title | Water wave optimization algorithm for autonomous underwater vehicle path planning problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20wave%20optimization%20algorithm%20for%20autonomous%20underwater%20vehicle%20path%20planning%20problem&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Yan,%20Zheping&rft.date=2021-01-01&rft.volume=40&rft.issue=5&rft.spage=9127&rft.epage=9141&rft.pages=9127-9141&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-201544&rft_dat=%3Cproquest_cross%3E2516969834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516969834&rft_id=info:pmid/&rfr_iscdi=true |