Confident sequence learning: A sequence class-label noise filtering technique to improve scene digit recognition

Reading digits from natural images is a challenging computer vision task central to a variety of emerging applications. However, the increased scalability and complexity of datasets or complex applications bring about inevitable label noise. Because the label noise in the scene digit recognition dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2021-01, Vol.40 (5), p.9345-9359
Hauptverfasser: Liu, Haiqing, Li, Daoxing, Li, Yuancheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9359
container_issue 5
container_start_page 9345
container_title Journal of intelligent & fuzzy systems
container_volume 40
creator Liu, Haiqing
Li, Daoxing
Li, Yuancheng
description Reading digits from natural images is a challenging computer vision task central to a variety of emerging applications. However, the increased scalability and complexity of datasets or complex applications bring about inevitable label noise. Because the label noise in the scene digit recognition dataset is sequence-like, most existing methods cannot deal with label noise in scene digit recognition. We propose a novel sequence class-label noise filter called Confident Sequence Learning. Confident Sequence Learning consists of two critical parts: the sequence-like confidence segmentation algorithm and the Confident Learning method. The sequence-like confidence segmentation algorithms slice the sequence-like labels and the sequence-like predicted probabilities, reorganize them in the form of the independent stochastic process and the white noise process. The Confident Learning method estimates the joint distribution between observed labels and latent labels using the segmented labels and probabilities. The TRDG dataset and SVHN dataset experiments showed that the confident sequence learning could find label errors with high accuracy and significantly improve the VGG-Attn and the TPS-ResNet-Attn model’s performance in the presence of synthetic sequence class-label noise.
doi_str_mv 10.3233/JIFS-201825
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516969110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516969110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-67a828bf455b0b74604a977798341445cbc10d9e593df8ee00901e4a6d5db3263</originalsourceid><addsrcrecordid>eNpFkM1KAzEURoMoWKsrXyDgUkbzn4m7UqxWCi7U9ZDJ3Kkp06QmUfBtfBafzJEKru7lcvjux0HonJIrzji_flgunipGaM3kAZrQWsuqNkofjjtRoqJMqGN0kvOGEKolIxP0No-h9x2EgjO8vUNwgAewKfiwvsGz_6MbbM7VYFsYcIg-A-79UCCNHC7gXoMfQVzi95ff7lL8AJwdBMCdX_uCE7i4Dr74GE7RUW-HDGd_c4peFrfP8_tq9Xi3nM9WlWPUlEppW7O67YWULWm1UERYo7U2NRdUCOlaR0lnQBre9TUAIYZQEFZ1sms5U3yKLva5Y5uxWi7NJr6nML5smKTKKEMpGanLPeVSzDlB3-yS39r02VDS_Dptfp02e6f8B4GQayM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516969110</pqid></control><display><type>article</type><title>Confident sequence learning: A sequence class-label noise filtering technique to improve scene digit recognition</title><source>EBSCOhost Business Source Complete</source><creator>Liu, Haiqing ; Li, Daoxing ; Li, Yuancheng</creator><creatorcontrib>Liu, Haiqing ; Li, Daoxing ; Li, Yuancheng</creatorcontrib><description>Reading digits from natural images is a challenging computer vision task central to a variety of emerging applications. However, the increased scalability and complexity of datasets or complex applications bring about inevitable label noise. Because the label noise in the scene digit recognition dataset is sequence-like, most existing methods cannot deal with label noise in scene digit recognition. We propose a novel sequence class-label noise filter called Confident Sequence Learning. Confident Sequence Learning consists of two critical parts: the sequence-like confidence segmentation algorithm and the Confident Learning method. The sequence-like confidence segmentation algorithms slice the sequence-like labels and the sequence-like predicted probabilities, reorganize them in the form of the independent stochastic process and the white noise process. The Confident Learning method estimates the joint distribution between observed labels and latent labels using the segmented labels and probabilities. The TRDG dataset and SVHN dataset experiments showed that the confident sequence learning could find label errors with high accuracy and significantly improve the VGG-Attn and the TPS-ResNet-Attn model’s performance in the presence of synthetic sequence class-label noise.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-201825</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Complexity ; Computer vision ; Datasets ; Image segmentation ; Labels ; Machine learning ; Noise ; Object recognition ; Stochastic processes ; Teaching methods ; White noise</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2021-01, Vol.40 (5), p.9345-9359</ispartof><rights>Copyright IOS Press BV 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-67a828bf455b0b74604a977798341445cbc10d9e593df8ee00901e4a6d5db3263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Liu, Haiqing</creatorcontrib><creatorcontrib>Li, Daoxing</creatorcontrib><creatorcontrib>Li, Yuancheng</creatorcontrib><title>Confident sequence learning: A sequence class-label noise filtering technique to improve scene digit recognition</title><title>Journal of intelligent &amp; fuzzy systems</title><description>Reading digits from natural images is a challenging computer vision task central to a variety of emerging applications. However, the increased scalability and complexity of datasets or complex applications bring about inevitable label noise. Because the label noise in the scene digit recognition dataset is sequence-like, most existing methods cannot deal with label noise in scene digit recognition. We propose a novel sequence class-label noise filter called Confident Sequence Learning. Confident Sequence Learning consists of two critical parts: the sequence-like confidence segmentation algorithm and the Confident Learning method. The sequence-like confidence segmentation algorithms slice the sequence-like labels and the sequence-like predicted probabilities, reorganize them in the form of the independent stochastic process and the white noise process. The Confident Learning method estimates the joint distribution between observed labels and latent labels using the segmented labels and probabilities. The TRDG dataset and SVHN dataset experiments showed that the confident sequence learning could find label errors with high accuracy and significantly improve the VGG-Attn and the TPS-ResNet-Attn model’s performance in the presence of synthetic sequence class-label noise.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Image segmentation</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Noise</subject><subject>Object recognition</subject><subject>Stochastic processes</subject><subject>Teaching methods</subject><subject>White noise</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkM1KAzEURoMoWKsrXyDgUkbzn4m7UqxWCi7U9ZDJ3Kkp06QmUfBtfBafzJEKru7lcvjux0HonJIrzji_flgunipGaM3kAZrQWsuqNkofjjtRoqJMqGN0kvOGEKolIxP0No-h9x2EgjO8vUNwgAewKfiwvsGz_6MbbM7VYFsYcIg-A-79UCCNHC7gXoMfQVzi95ff7lL8AJwdBMCdX_uCE7i4Dr74GE7RUW-HDGd_c4peFrfP8_tq9Xi3nM9WlWPUlEppW7O67YWULWm1UERYo7U2NRdUCOlaR0lnQBre9TUAIYZQEFZ1sms5U3yKLva5Y5uxWi7NJr6nML5smKTKKEMpGanLPeVSzDlB3-yS39r02VDS_Dptfp02e6f8B4GQayM</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Liu, Haiqing</creator><creator>Li, Daoxing</creator><creator>Li, Yuancheng</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210101</creationdate><title>Confident sequence learning: A sequence class-label noise filtering technique to improve scene digit recognition</title><author>Liu, Haiqing ; Li, Daoxing ; Li, Yuancheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-67a828bf455b0b74604a977798341445cbc10d9e593df8ee00901e4a6d5db3263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Image segmentation</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Noise</topic><topic>Object recognition</topic><topic>Stochastic processes</topic><topic>Teaching methods</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haiqing</creatorcontrib><creatorcontrib>Li, Daoxing</creatorcontrib><creatorcontrib>Li, Yuancheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haiqing</au><au>Li, Daoxing</au><au>Li, Yuancheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confident sequence learning: A sequence class-label noise filtering technique to improve scene digit recognition</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>40</volume><issue>5</issue><spage>9345</spage><epage>9359</epage><pages>9345-9359</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Reading digits from natural images is a challenging computer vision task central to a variety of emerging applications. However, the increased scalability and complexity of datasets or complex applications bring about inevitable label noise. Because the label noise in the scene digit recognition dataset is sequence-like, most existing methods cannot deal with label noise in scene digit recognition. We propose a novel sequence class-label noise filter called Confident Sequence Learning. Confident Sequence Learning consists of two critical parts: the sequence-like confidence segmentation algorithm and the Confident Learning method. The sequence-like confidence segmentation algorithms slice the sequence-like labels and the sequence-like predicted probabilities, reorganize them in the form of the independent stochastic process and the white noise process. The Confident Learning method estimates the joint distribution between observed labels and latent labels using the segmented labels and probabilities. The TRDG dataset and SVHN dataset experiments showed that the confident sequence learning could find label errors with high accuracy and significantly improve the VGG-Attn and the TPS-ResNet-Attn model’s performance in the presence of synthetic sequence class-label noise.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-201825</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2021-01, Vol.40 (5), p.9345-9359
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2516969110
source EBSCOhost Business Source Complete
subjects Algorithms
Complexity
Computer vision
Datasets
Image segmentation
Labels
Machine learning
Noise
Object recognition
Stochastic processes
Teaching methods
White noise
title Confident sequence learning: A sequence class-label noise filtering technique to improve scene digit recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confident%20sequence%20learning:%20A%20sequence%20class-label%20noise%20filtering%20technique%20to%C2%A0improve%20scene%20digit%20recognition&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Liu,%20Haiqing&rft.date=2021-01-01&rft.volume=40&rft.issue=5&rft.spage=9345&rft.epage=9359&rft.pages=9345-9359&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-201825&rft_dat=%3Cproquest_cross%3E2516969110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516969110&rft_id=info:pmid/&rfr_iscdi=true