Confident sequence learning: A sequence class-label noise filtering technique to improve scene digit recognition
Reading digits from natural images is a challenging computer vision task central to a variety of emerging applications. However, the increased scalability and complexity of datasets or complex applications bring about inevitable label noise. Because the label noise in the scene digit recognition dat...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2021-01, Vol.40 (5), p.9345-9359 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9359 |
---|---|
container_issue | 5 |
container_start_page | 9345 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 40 |
creator | Liu, Haiqing Li, Daoxing Li, Yuancheng |
description | Reading digits from natural images is a challenging computer vision task central to a variety of emerging applications. However, the increased scalability and complexity of datasets or complex applications bring about inevitable label noise. Because the label noise in the scene digit recognition dataset is sequence-like, most existing methods cannot deal with label noise in scene digit recognition. We propose a novel sequence class-label noise filter called Confident Sequence Learning. Confident Sequence Learning consists of two critical parts: the sequence-like confidence segmentation algorithm and the Confident Learning method. The sequence-like confidence segmentation algorithms slice the sequence-like labels and the sequence-like predicted probabilities, reorganize them in the form of the independent stochastic process and the white noise process. The Confident Learning method estimates the joint distribution between observed labels and latent labels using the segmented labels and probabilities. The TRDG dataset and SVHN dataset experiments showed that the confident sequence learning could find label errors with high accuracy and significantly improve the VGG-Attn and the TPS-ResNet-Attn model’s performance in the presence of synthetic sequence class-label noise. |
doi_str_mv | 10.3233/JIFS-201825 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516969110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516969110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-67a828bf455b0b74604a977798341445cbc10d9e593df8ee00901e4a6d5db3263</originalsourceid><addsrcrecordid>eNpFkM1KAzEURoMoWKsrXyDgUkbzn4m7UqxWCi7U9ZDJ3Kkp06QmUfBtfBafzJEKru7lcvjux0HonJIrzji_flgunipGaM3kAZrQWsuqNkofjjtRoqJMqGN0kvOGEKolIxP0No-h9x2EgjO8vUNwgAewKfiwvsGz_6MbbM7VYFsYcIg-A-79UCCNHC7gXoMfQVzi95ff7lL8AJwdBMCdX_uCE7i4Dr74GE7RUW-HDGd_c4peFrfP8_tq9Xi3nM9WlWPUlEppW7O67YWULWm1UERYo7U2NRdUCOlaR0lnQBre9TUAIYZQEFZ1sms5U3yKLva5Y5uxWi7NJr6nML5smKTKKEMpGanLPeVSzDlB3-yS39r02VDS_Dptfp02e6f8B4GQayM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516969110</pqid></control><display><type>article</type><title>Confident sequence learning: A sequence class-label noise filtering technique to improve scene digit recognition</title><source>EBSCOhost Business Source Complete</source><creator>Liu, Haiqing ; Li, Daoxing ; Li, Yuancheng</creator><creatorcontrib>Liu, Haiqing ; Li, Daoxing ; Li, Yuancheng</creatorcontrib><description>Reading digits from natural images is a challenging computer vision task central to a variety of emerging applications. However, the increased scalability and complexity of datasets or complex applications bring about inevitable label noise. Because the label noise in the scene digit recognition dataset is sequence-like, most existing methods cannot deal with label noise in scene digit recognition. We propose a novel sequence class-label noise filter called Confident Sequence Learning. Confident Sequence Learning consists of two critical parts: the sequence-like confidence segmentation algorithm and the Confident Learning method. The sequence-like confidence segmentation algorithms slice the sequence-like labels and the sequence-like predicted probabilities, reorganize them in the form of the independent stochastic process and the white noise process. The Confident Learning method estimates the joint distribution between observed labels and latent labels using the segmented labels and probabilities. The TRDG dataset and SVHN dataset experiments showed that the confident sequence learning could find label errors with high accuracy and significantly improve the VGG-Attn and the TPS-ResNet-Attn model’s performance in the presence of synthetic sequence class-label noise.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-201825</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Complexity ; Computer vision ; Datasets ; Image segmentation ; Labels ; Machine learning ; Noise ; Object recognition ; Stochastic processes ; Teaching methods ; White noise</subject><ispartof>Journal of intelligent & fuzzy systems, 2021-01, Vol.40 (5), p.9345-9359</ispartof><rights>Copyright IOS Press BV 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-67a828bf455b0b74604a977798341445cbc10d9e593df8ee00901e4a6d5db3263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Liu, Haiqing</creatorcontrib><creatorcontrib>Li, Daoxing</creatorcontrib><creatorcontrib>Li, Yuancheng</creatorcontrib><title>Confident sequence learning: A sequence class-label noise filtering technique to improve scene digit recognition</title><title>Journal of intelligent & fuzzy systems</title><description>Reading digits from natural images is a challenging computer vision task central to a variety of emerging applications. However, the increased scalability and complexity of datasets or complex applications bring about inevitable label noise. Because the label noise in the scene digit recognition dataset is sequence-like, most existing methods cannot deal with label noise in scene digit recognition. We propose a novel sequence class-label noise filter called Confident Sequence Learning. Confident Sequence Learning consists of two critical parts: the sequence-like confidence segmentation algorithm and the Confident Learning method. The sequence-like confidence segmentation algorithms slice the sequence-like labels and the sequence-like predicted probabilities, reorganize them in the form of the independent stochastic process and the white noise process. The Confident Learning method estimates the joint distribution between observed labels and latent labels using the segmented labels and probabilities. The TRDG dataset and SVHN dataset experiments showed that the confident sequence learning could find label errors with high accuracy and significantly improve the VGG-Attn and the TPS-ResNet-Attn model’s performance in the presence of synthetic sequence class-label noise.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Image segmentation</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Noise</subject><subject>Object recognition</subject><subject>Stochastic processes</subject><subject>Teaching methods</subject><subject>White noise</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkM1KAzEURoMoWKsrXyDgUkbzn4m7UqxWCi7U9ZDJ3Kkp06QmUfBtfBafzJEKru7lcvjux0HonJIrzji_flgunipGaM3kAZrQWsuqNkofjjtRoqJMqGN0kvOGEKolIxP0No-h9x2EgjO8vUNwgAewKfiwvsGz_6MbbM7VYFsYcIg-A-79UCCNHC7gXoMfQVzi95ff7lL8AJwdBMCdX_uCE7i4Dr74GE7RUW-HDGd_c4peFrfP8_tq9Xi3nM9WlWPUlEppW7O67YWULWm1UERYo7U2NRdUCOlaR0lnQBre9TUAIYZQEFZ1sms5U3yKLva5Y5uxWi7NJr6nML5smKTKKEMpGanLPeVSzDlB3-yS39r02VDS_Dptfp02e6f8B4GQayM</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Liu, Haiqing</creator><creator>Li, Daoxing</creator><creator>Li, Yuancheng</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210101</creationdate><title>Confident sequence learning: A sequence class-label noise filtering technique to improve scene digit recognition</title><author>Liu, Haiqing ; Li, Daoxing ; Li, Yuancheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-67a828bf455b0b74604a977798341445cbc10d9e593df8ee00901e4a6d5db3263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Image segmentation</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Noise</topic><topic>Object recognition</topic><topic>Stochastic processes</topic><topic>Teaching methods</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haiqing</creatorcontrib><creatorcontrib>Li, Daoxing</creatorcontrib><creatorcontrib>Li, Yuancheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haiqing</au><au>Li, Daoxing</au><au>Li, Yuancheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confident sequence learning: A sequence class-label noise filtering technique to improve scene digit recognition</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>40</volume><issue>5</issue><spage>9345</spage><epage>9359</epage><pages>9345-9359</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Reading digits from natural images is a challenging computer vision task central to a variety of emerging applications. However, the increased scalability and complexity of datasets or complex applications bring about inevitable label noise. Because the label noise in the scene digit recognition dataset is sequence-like, most existing methods cannot deal with label noise in scene digit recognition. We propose a novel sequence class-label noise filter called Confident Sequence Learning. Confident Sequence Learning consists of two critical parts: the sequence-like confidence segmentation algorithm and the Confident Learning method. The sequence-like confidence segmentation algorithms slice the sequence-like labels and the sequence-like predicted probabilities, reorganize them in the form of the independent stochastic process and the white noise process. The Confident Learning method estimates the joint distribution between observed labels and latent labels using the segmented labels and probabilities. The TRDG dataset and SVHN dataset experiments showed that the confident sequence learning could find label errors with high accuracy and significantly improve the VGG-Attn and the TPS-ResNet-Attn model’s performance in the presence of synthetic sequence class-label noise.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-201825</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2021-01, Vol.40 (5), p.9345-9359 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2516969110 |
source | EBSCOhost Business Source Complete |
subjects | Algorithms Complexity Computer vision Datasets Image segmentation Labels Machine learning Noise Object recognition Stochastic processes Teaching methods White noise |
title | Confident sequence learning: A sequence class-label noise filtering technique to improve scene digit recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confident%20sequence%20learning:%20A%20sequence%20class-label%20noise%20filtering%20technique%20to%C2%A0improve%20scene%20digit%20recognition&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Liu,%20Haiqing&rft.date=2021-01-01&rft.volume=40&rft.issue=5&rft.spage=9345&rft.epage=9359&rft.pages=9345-9359&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-201825&rft_dat=%3Cproquest_cross%3E2516969110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516969110&rft_id=info:pmid/&rfr_iscdi=true |