Binding loop of sunflower trypsin inhibitor 1 serves as a design motif for proteolysis-resistant antimicrobial peptides

Although antimicrobial peptides (AMPs) have become powerful drug candidates in the post-antibiotic era, but their low protease stability hinders their clinical application. In the present study, the natural sunflower trypsin inhibitor 1 (SFTI-1) binding loop (CTKSIPPIC) was used to design and synthe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2021-04, Vol.124, p.254-269
Hauptverfasser: Wang, Chensi, Shao, Changxuan, Fang, Yuxin, Wang, Jiajun, Dong, Na, Shan, Anshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 269
container_issue
container_start_page 254
container_title Acta biomaterialia
container_volume 124
creator Wang, Chensi
Shao, Changxuan
Fang, Yuxin
Wang, Jiajun
Dong, Na
Shan, Anshan
description Although antimicrobial peptides (AMPs) have become powerful drug candidates in the post-antibiotic era, but their low protease stability hinders their clinical application. In the present study, the natural sunflower trypsin inhibitor 1 (SFTI-1) binding loop (CTKSIPPIC) was used to design and synthesize a specific anti-proteolytic sequence template ((RX)n W (RX)n CTKSIPPIC (n = 2, 3; X represents A, I, L, V, F, and W)). After several antibacterial, bactericidal, and toxicity tests, RV3 stood out from the variants and had the highest average selectivity index (SI all = 156.03). It is highly stable in serum, varying pH, temperature, and salt ions as well as under high trypsin, pepsin, or papain concentrations. In a mouse skin inflammation model, established by Pseudomonas aeruginosa infection, RV3 could effectively kill the pathogen, promote wound healing, inhibit inflammatory cell infiltration, and inhibit mRNA and protein expression of TNF-α, IL-6, and IL-1β inflammatory factors. The antibacterial mechanisms of RV3 include combining with lipopolysaccharides and increasing cell membrane permeability, leading to cell membrane rupture and death. These findings indicate that RV3 has great potential for the treatment of bacterial infections. [Display omitted]
doi_str_mv 10.1016/j.actbio.2021.01.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516890066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706121000647</els_id><sourcerecordid>2516890066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-e6fe16a7b3f014b67e98986f62a5edeb71862b610c721e0db503acfd581e3783</originalsourceid><addsrcrecordid>eNp9UE1rGzEQFaUhSZP8g1IEPa87Wnkl-VJIQ78g0EvuQtodpWPW0laSE_zvK-Okx8IbZmDem4_H2HsBKwFCfdqu3Fg9pVUPvVhBg1Rv2KUw2nR6UOZtq_W67zQoccHelbIFkEb05pxdSDmAGWC4ZM9fKE4UH_mc0sJT4GUfw5yeMfOaD0uhyCn-Jk81ZS54wfyEhbsGPmGhx8h3qVLgobWXnCqm-VCodLk1S3Wx8ha0ozEnT27mCy6VmvKanQU3F7x5yVfs4dvXh7sf3f2v7z_vbu-7UW6gdqgCCuW0lwHE2iuNG7MxKqjeDTih18Ko3isBo-4FwuQHkG4M02AESm3kFft4Gttu-7PHUu027XNsG20_CGU2AEo11vrEaleWkjHYJdPO5YMVYI9m2609mW2PZltokEfZh5fhe7_D6Z_o1d1G-HwiYPvwiTDbMhLGESfKOFY7Jfr_hr_hsZRd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516890066</pqid></control><display><type>article</type><title>Binding loop of sunflower trypsin inhibitor 1 serves as a design motif for proteolysis-resistant antimicrobial peptides</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wang, Chensi ; Shao, Changxuan ; Fang, Yuxin ; Wang, Jiajun ; Dong, Na ; Shan, Anshan</creator><creatorcontrib>Wang, Chensi ; Shao, Changxuan ; Fang, Yuxin ; Wang, Jiajun ; Dong, Na ; Shan, Anshan</creatorcontrib><description>Although antimicrobial peptides (AMPs) have become powerful drug candidates in the post-antibiotic era, but their low protease stability hinders their clinical application. In the present study, the natural sunflower trypsin inhibitor 1 (SFTI-1) binding loop (CTKSIPPIC) was used to design and synthesize a specific anti-proteolytic sequence template ((RX)n W (RX)n CTKSIPPIC (n = 2, 3; X represents A, I, L, V, F, and W)). After several antibacterial, bactericidal, and toxicity tests, RV3 stood out from the variants and had the highest average selectivity index (SI all = 156.03). It is highly stable in serum, varying pH, temperature, and salt ions as well as under high trypsin, pepsin, or papain concentrations. In a mouse skin inflammation model, established by Pseudomonas aeruginosa infection, RV3 could effectively kill the pathogen, promote wound healing, inhibit inflammatory cell infiltration, and inhibit mRNA and protein expression of TNF-α, IL-6, and IL-1β inflammatory factors. The antibacterial mechanisms of RV3 include combining with lipopolysaccharides and increasing cell membrane permeability, leading to cell membrane rupture and death. These findings indicate that RV3 has great potential for the treatment of bacterial infections. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2021.01.036</identifier><identifier>PMID: 33508505</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Antiinfectives and antibacterials ; Antimicrobial peptides ; Antimicrobial Peptides - chemistry ; Bacterial diseases ; Binding ; Cell death ; Cell membranes ; Drug development ; Gene expression ; Helianthus ; Helianthus - chemistry ; Helianthus - metabolism ; IL-1β ; Infections ; Inflammation ; Interleukin 6 ; Lipopolysaccharides ; Membrane permeability ; Mice ; Microbial Sensitivity Tests ; mRNA ; Papain ; Pepsin ; Peptides ; Pore Forming Cytotoxic Proteins ; Protease stability ; Proteolysis ; Pseudomonas aeruginosa ; Selectivity ; SFTI-1 ; Skin inflammation ; Structure-function relationship ; Sunflowers ; Toxicity ; Toxicity testing ; Trypsin ; Trypsin - metabolism ; Trypsin Inhibitors ; Tumor necrosis factor-α ; Wound healing</subject><ispartof>Acta biomaterialia, 2021-04, Vol.124, p.254-269</ispartof><rights>2021 Acta Materialia Inc.</rights><rights>Copyright © 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Apr 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-e6fe16a7b3f014b67e98986f62a5edeb71862b610c721e0db503acfd581e3783</citedby><cites>FETCH-LOGICAL-c390t-e6fe16a7b3f014b67e98986f62a5edeb71862b610c721e0db503acfd581e3783</cites><orcidid>0000-0003-2830-7509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706121000647$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33508505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chensi</creatorcontrib><creatorcontrib>Shao, Changxuan</creatorcontrib><creatorcontrib>Fang, Yuxin</creatorcontrib><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Dong, Na</creatorcontrib><creatorcontrib>Shan, Anshan</creatorcontrib><title>Binding loop of sunflower trypsin inhibitor 1 serves as a design motif for proteolysis-resistant antimicrobial peptides</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Although antimicrobial peptides (AMPs) have become powerful drug candidates in the post-antibiotic era, but their low protease stability hinders their clinical application. In the present study, the natural sunflower trypsin inhibitor 1 (SFTI-1) binding loop (CTKSIPPIC) was used to design and synthesize a specific anti-proteolytic sequence template ((RX)n W (RX)n CTKSIPPIC (n = 2, 3; X represents A, I, L, V, F, and W)). After several antibacterial, bactericidal, and toxicity tests, RV3 stood out from the variants and had the highest average selectivity index (SI all = 156.03). It is highly stable in serum, varying pH, temperature, and salt ions as well as under high trypsin, pepsin, or papain concentrations. In a mouse skin inflammation model, established by Pseudomonas aeruginosa infection, RV3 could effectively kill the pathogen, promote wound healing, inhibit inflammatory cell infiltration, and inhibit mRNA and protein expression of TNF-α, IL-6, and IL-1β inflammatory factors. The antibacterial mechanisms of RV3 include combining with lipopolysaccharides and increasing cell membrane permeability, leading to cell membrane rupture and death. These findings indicate that RV3 has great potential for the treatment of bacterial infections. [Display omitted]</description><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial peptides</subject><subject>Antimicrobial Peptides - chemistry</subject><subject>Bacterial diseases</subject><subject>Binding</subject><subject>Cell death</subject><subject>Cell membranes</subject><subject>Drug development</subject><subject>Gene expression</subject><subject>Helianthus</subject><subject>Helianthus - chemistry</subject><subject>Helianthus - metabolism</subject><subject>IL-1β</subject><subject>Infections</subject><subject>Inflammation</subject><subject>Interleukin 6</subject><subject>Lipopolysaccharides</subject><subject>Membrane permeability</subject><subject>Mice</subject><subject>Microbial Sensitivity Tests</subject><subject>mRNA</subject><subject>Papain</subject><subject>Pepsin</subject><subject>Peptides</subject><subject>Pore Forming Cytotoxic Proteins</subject><subject>Protease stability</subject><subject>Proteolysis</subject><subject>Pseudomonas aeruginosa</subject><subject>Selectivity</subject><subject>SFTI-1</subject><subject>Skin inflammation</subject><subject>Structure-function relationship</subject><subject>Sunflowers</subject><subject>Toxicity</subject><subject>Toxicity testing</subject><subject>Trypsin</subject><subject>Trypsin - metabolism</subject><subject>Trypsin Inhibitors</subject><subject>Tumor necrosis factor-α</subject><subject>Wound healing</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UE1rGzEQFaUhSZP8g1IEPa87Wnkl-VJIQ78g0EvuQtodpWPW0laSE_zvK-Okx8IbZmDem4_H2HsBKwFCfdqu3Fg9pVUPvVhBg1Rv2KUw2nR6UOZtq_W67zQoccHelbIFkEb05pxdSDmAGWC4ZM9fKE4UH_mc0sJT4GUfw5yeMfOaD0uhyCn-Jk81ZS54wfyEhbsGPmGhx8h3qVLgobWXnCqm-VCodLk1S3Wx8ha0ozEnT27mCy6VmvKanQU3F7x5yVfs4dvXh7sf3f2v7z_vbu-7UW6gdqgCCuW0lwHE2iuNG7MxKqjeDTih18Ko3isBo-4FwuQHkG4M02AESm3kFft4Gttu-7PHUu027XNsG20_CGU2AEo11vrEaleWkjHYJdPO5YMVYI9m2609mW2PZltokEfZh5fhe7_D6Z_o1d1G-HwiYPvwiTDbMhLGESfKOFY7Jfr_hr_hsZRd</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wang, Chensi</creator><creator>Shao, Changxuan</creator><creator>Fang, Yuxin</creator><creator>Wang, Jiajun</creator><creator>Dong, Na</creator><creator>Shan, Anshan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-2830-7509</orcidid></search><sort><creationdate>20210401</creationdate><title>Binding loop of sunflower trypsin inhibitor 1 serves as a design motif for proteolysis-resistant antimicrobial peptides</title><author>Wang, Chensi ; Shao, Changxuan ; Fang, Yuxin ; Wang, Jiajun ; Dong, Na ; Shan, Anshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-e6fe16a7b3f014b67e98986f62a5edeb71862b610c721e0db503acfd581e3783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial peptides</topic><topic>Antimicrobial Peptides - chemistry</topic><topic>Bacterial diseases</topic><topic>Binding</topic><topic>Cell death</topic><topic>Cell membranes</topic><topic>Drug development</topic><topic>Gene expression</topic><topic>Helianthus</topic><topic>Helianthus - chemistry</topic><topic>Helianthus - metabolism</topic><topic>IL-1β</topic><topic>Infections</topic><topic>Inflammation</topic><topic>Interleukin 6</topic><topic>Lipopolysaccharides</topic><topic>Membrane permeability</topic><topic>Mice</topic><topic>Microbial Sensitivity Tests</topic><topic>mRNA</topic><topic>Papain</topic><topic>Pepsin</topic><topic>Peptides</topic><topic>Pore Forming Cytotoxic Proteins</topic><topic>Protease stability</topic><topic>Proteolysis</topic><topic>Pseudomonas aeruginosa</topic><topic>Selectivity</topic><topic>SFTI-1</topic><topic>Skin inflammation</topic><topic>Structure-function relationship</topic><topic>Sunflowers</topic><topic>Toxicity</topic><topic>Toxicity testing</topic><topic>Trypsin</topic><topic>Trypsin - metabolism</topic><topic>Trypsin Inhibitors</topic><topic>Tumor necrosis factor-α</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chensi</creatorcontrib><creatorcontrib>Shao, Changxuan</creatorcontrib><creatorcontrib>Fang, Yuxin</creatorcontrib><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Dong, Na</creatorcontrib><creatorcontrib>Shan, Anshan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chensi</au><au>Shao, Changxuan</au><au>Fang, Yuxin</au><au>Wang, Jiajun</au><au>Dong, Na</au><au>Shan, Anshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binding loop of sunflower trypsin inhibitor 1 serves as a design motif for proteolysis-resistant antimicrobial peptides</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>124</volume><spage>254</spage><epage>269</epage><pages>254-269</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Although antimicrobial peptides (AMPs) have become powerful drug candidates in the post-antibiotic era, but their low protease stability hinders their clinical application. In the present study, the natural sunflower trypsin inhibitor 1 (SFTI-1) binding loop (CTKSIPPIC) was used to design and synthesize a specific anti-proteolytic sequence template ((RX)n W (RX)n CTKSIPPIC (n = 2, 3; X represents A, I, L, V, F, and W)). After several antibacterial, bactericidal, and toxicity tests, RV3 stood out from the variants and had the highest average selectivity index (SI all = 156.03). It is highly stable in serum, varying pH, temperature, and salt ions as well as under high trypsin, pepsin, or papain concentrations. In a mouse skin inflammation model, established by Pseudomonas aeruginosa infection, RV3 could effectively kill the pathogen, promote wound healing, inhibit inflammatory cell infiltration, and inhibit mRNA and protein expression of TNF-α, IL-6, and IL-1β inflammatory factors. The antibacterial mechanisms of RV3 include combining with lipopolysaccharides and increasing cell membrane permeability, leading to cell membrane rupture and death. These findings indicate that RV3 has great potential for the treatment of bacterial infections. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33508505</pmid><doi>10.1016/j.actbio.2021.01.036</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2830-7509</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2021-04, Vol.124, p.254-269
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_journals_2516890066
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Anti-Bacterial Agents - pharmacology
Antibiotics
Antiinfectives and antibacterials
Antimicrobial peptides
Antimicrobial Peptides - chemistry
Bacterial diseases
Binding
Cell death
Cell membranes
Drug development
Gene expression
Helianthus
Helianthus - chemistry
Helianthus - metabolism
IL-1β
Infections
Inflammation
Interleukin 6
Lipopolysaccharides
Membrane permeability
Mice
Microbial Sensitivity Tests
mRNA
Papain
Pepsin
Peptides
Pore Forming Cytotoxic Proteins
Protease stability
Proteolysis
Pseudomonas aeruginosa
Selectivity
SFTI-1
Skin inflammation
Structure-function relationship
Sunflowers
Toxicity
Toxicity testing
Trypsin
Trypsin - metabolism
Trypsin Inhibitors
Tumor necrosis factor-α
Wound healing
title Binding loop of sunflower trypsin inhibitor 1 serves as a design motif for proteolysis-resistant antimicrobial peptides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binding%20loop%20of%20sunflower%20trypsin%20inhibitor%201%20serves%20as%20a%20design%20motif%20for%20proteolysis-resistant%20antimicrobial%20peptides&rft.jtitle=Acta%20biomaterialia&rft.au=Wang,%20Chensi&rft.date=2021-04-01&rft.volume=124&rft.spage=254&rft.epage=269&rft.pages=254-269&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2021.01.036&rft_dat=%3Cproquest_cross%3E2516890066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516890066&rft_id=info:pmid/33508505&rft_els_id=S1742706121000647&rfr_iscdi=true