Binding loop of sunflower trypsin inhibitor 1 serves as a design motif for proteolysis-resistant antimicrobial peptides
Although antimicrobial peptides (AMPs) have become powerful drug candidates in the post-antibiotic era, but their low protease stability hinders their clinical application. In the present study, the natural sunflower trypsin inhibitor 1 (SFTI-1) binding loop (CTKSIPPIC) was used to design and synthe...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2021-04, Vol.124, p.254-269 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 269 |
---|---|
container_issue | |
container_start_page | 254 |
container_title | Acta biomaterialia |
container_volume | 124 |
creator | Wang, Chensi Shao, Changxuan Fang, Yuxin Wang, Jiajun Dong, Na Shan, Anshan |
description | Although antimicrobial peptides (AMPs) have become powerful drug candidates in the post-antibiotic era, but their low protease stability hinders their clinical application. In the present study, the natural sunflower trypsin inhibitor 1 (SFTI-1) binding loop (CTKSIPPIC) was used to design and synthesize a specific anti-proteolytic sequence template ((RX)n W (RX)n CTKSIPPIC (n = 2, 3; X represents A, I, L, V, F, and W)). After several antibacterial, bactericidal, and toxicity tests, RV3 stood out from the variants and had the highest average selectivity index (SI all = 156.03). It is highly stable in serum, varying pH, temperature, and salt ions as well as under high trypsin, pepsin, or papain concentrations. In a mouse skin inflammation model, established by Pseudomonas aeruginosa infection, RV3 could effectively kill the pathogen, promote wound healing, inhibit inflammatory cell infiltration, and inhibit mRNA and protein expression of TNF-α, IL-6, and IL-1β inflammatory factors. The antibacterial mechanisms of RV3 include combining with lipopolysaccharides and increasing cell membrane permeability, leading to cell membrane rupture and death. These findings indicate that RV3 has great potential for the treatment of bacterial infections.
[Display omitted] |
doi_str_mv | 10.1016/j.actbio.2021.01.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516890066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706121000647</els_id><sourcerecordid>2516890066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-e6fe16a7b3f014b67e98986f62a5edeb71862b610c721e0db503acfd581e3783</originalsourceid><addsrcrecordid>eNp9UE1rGzEQFaUhSZP8g1IEPa87Wnkl-VJIQ78g0EvuQtodpWPW0laSE_zvK-Okx8IbZmDem4_H2HsBKwFCfdqu3Fg9pVUPvVhBg1Rv2KUw2nR6UOZtq_W67zQoccHelbIFkEb05pxdSDmAGWC4ZM9fKE4UH_mc0sJT4GUfw5yeMfOaD0uhyCn-Jk81ZS54wfyEhbsGPmGhx8h3qVLgobWXnCqm-VCodLk1S3Wx8ha0ozEnT27mCy6VmvKanQU3F7x5yVfs4dvXh7sf3f2v7z_vbu-7UW6gdqgCCuW0lwHE2iuNG7MxKqjeDTih18Ko3isBo-4FwuQHkG4M02AESm3kFft4Gttu-7PHUu027XNsG20_CGU2AEo11vrEaleWkjHYJdPO5YMVYI9m2609mW2PZltokEfZh5fhe7_D6Z_o1d1G-HwiYPvwiTDbMhLGESfKOFY7Jfr_hr_hsZRd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516890066</pqid></control><display><type>article</type><title>Binding loop of sunflower trypsin inhibitor 1 serves as a design motif for proteolysis-resistant antimicrobial peptides</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wang, Chensi ; Shao, Changxuan ; Fang, Yuxin ; Wang, Jiajun ; Dong, Na ; Shan, Anshan</creator><creatorcontrib>Wang, Chensi ; Shao, Changxuan ; Fang, Yuxin ; Wang, Jiajun ; Dong, Na ; Shan, Anshan</creatorcontrib><description>Although antimicrobial peptides (AMPs) have become powerful drug candidates in the post-antibiotic era, but their low protease stability hinders their clinical application. In the present study, the natural sunflower trypsin inhibitor 1 (SFTI-1) binding loop (CTKSIPPIC) was used to design and synthesize a specific anti-proteolytic sequence template ((RX)n W (RX)n CTKSIPPIC (n = 2, 3; X represents A, I, L, V, F, and W)). After several antibacterial, bactericidal, and toxicity tests, RV3 stood out from the variants and had the highest average selectivity index (SI all = 156.03). It is highly stable in serum, varying pH, temperature, and salt ions as well as under high trypsin, pepsin, or papain concentrations. In a mouse skin inflammation model, established by Pseudomonas aeruginosa infection, RV3 could effectively kill the pathogen, promote wound healing, inhibit inflammatory cell infiltration, and inhibit mRNA and protein expression of TNF-α, IL-6, and IL-1β inflammatory factors. The antibacterial mechanisms of RV3 include combining with lipopolysaccharides and increasing cell membrane permeability, leading to cell membrane rupture and death. These findings indicate that RV3 has great potential for the treatment of bacterial infections.
[Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2021.01.036</identifier><identifier>PMID: 33508505</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Antiinfectives and antibacterials ; Antimicrobial peptides ; Antimicrobial Peptides - chemistry ; Bacterial diseases ; Binding ; Cell death ; Cell membranes ; Drug development ; Gene expression ; Helianthus ; Helianthus - chemistry ; Helianthus - metabolism ; IL-1β ; Infections ; Inflammation ; Interleukin 6 ; Lipopolysaccharides ; Membrane permeability ; Mice ; Microbial Sensitivity Tests ; mRNA ; Papain ; Pepsin ; Peptides ; Pore Forming Cytotoxic Proteins ; Protease stability ; Proteolysis ; Pseudomonas aeruginosa ; Selectivity ; SFTI-1 ; Skin inflammation ; Structure-function relationship ; Sunflowers ; Toxicity ; Toxicity testing ; Trypsin ; Trypsin - metabolism ; Trypsin Inhibitors ; Tumor necrosis factor-α ; Wound healing</subject><ispartof>Acta biomaterialia, 2021-04, Vol.124, p.254-269</ispartof><rights>2021 Acta Materialia Inc.</rights><rights>Copyright © 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Apr 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-e6fe16a7b3f014b67e98986f62a5edeb71862b610c721e0db503acfd581e3783</citedby><cites>FETCH-LOGICAL-c390t-e6fe16a7b3f014b67e98986f62a5edeb71862b610c721e0db503acfd581e3783</cites><orcidid>0000-0003-2830-7509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706121000647$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33508505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chensi</creatorcontrib><creatorcontrib>Shao, Changxuan</creatorcontrib><creatorcontrib>Fang, Yuxin</creatorcontrib><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Dong, Na</creatorcontrib><creatorcontrib>Shan, Anshan</creatorcontrib><title>Binding loop of sunflower trypsin inhibitor 1 serves as a design motif for proteolysis-resistant antimicrobial peptides</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Although antimicrobial peptides (AMPs) have become powerful drug candidates in the post-antibiotic era, but their low protease stability hinders their clinical application. In the present study, the natural sunflower trypsin inhibitor 1 (SFTI-1) binding loop (CTKSIPPIC) was used to design and synthesize a specific anti-proteolytic sequence template ((RX)n W (RX)n CTKSIPPIC (n = 2, 3; X represents A, I, L, V, F, and W)). After several antibacterial, bactericidal, and toxicity tests, RV3 stood out from the variants and had the highest average selectivity index (SI all = 156.03). It is highly stable in serum, varying pH, temperature, and salt ions as well as under high trypsin, pepsin, or papain concentrations. In a mouse skin inflammation model, established by Pseudomonas aeruginosa infection, RV3 could effectively kill the pathogen, promote wound healing, inhibit inflammatory cell infiltration, and inhibit mRNA and protein expression of TNF-α, IL-6, and IL-1β inflammatory factors. The antibacterial mechanisms of RV3 include combining with lipopolysaccharides and increasing cell membrane permeability, leading to cell membrane rupture and death. These findings indicate that RV3 has great potential for the treatment of bacterial infections.
[Display omitted]</description><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial peptides</subject><subject>Antimicrobial Peptides - chemistry</subject><subject>Bacterial diseases</subject><subject>Binding</subject><subject>Cell death</subject><subject>Cell membranes</subject><subject>Drug development</subject><subject>Gene expression</subject><subject>Helianthus</subject><subject>Helianthus - chemistry</subject><subject>Helianthus - metabolism</subject><subject>IL-1β</subject><subject>Infections</subject><subject>Inflammation</subject><subject>Interleukin 6</subject><subject>Lipopolysaccharides</subject><subject>Membrane permeability</subject><subject>Mice</subject><subject>Microbial Sensitivity Tests</subject><subject>mRNA</subject><subject>Papain</subject><subject>Pepsin</subject><subject>Peptides</subject><subject>Pore Forming Cytotoxic Proteins</subject><subject>Protease stability</subject><subject>Proteolysis</subject><subject>Pseudomonas aeruginosa</subject><subject>Selectivity</subject><subject>SFTI-1</subject><subject>Skin inflammation</subject><subject>Structure-function relationship</subject><subject>Sunflowers</subject><subject>Toxicity</subject><subject>Toxicity testing</subject><subject>Trypsin</subject><subject>Trypsin - metabolism</subject><subject>Trypsin Inhibitors</subject><subject>Tumor necrosis factor-α</subject><subject>Wound healing</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UE1rGzEQFaUhSZP8g1IEPa87Wnkl-VJIQ78g0EvuQtodpWPW0laSE_zvK-Okx8IbZmDem4_H2HsBKwFCfdqu3Fg9pVUPvVhBg1Rv2KUw2nR6UOZtq_W67zQoccHelbIFkEb05pxdSDmAGWC4ZM9fKE4UH_mc0sJT4GUfw5yeMfOaD0uhyCn-Jk81ZS54wfyEhbsGPmGhx8h3qVLgobWXnCqm-VCodLk1S3Wx8ha0ozEnT27mCy6VmvKanQU3F7x5yVfs4dvXh7sf3f2v7z_vbu-7UW6gdqgCCuW0lwHE2iuNG7MxKqjeDTih18Ko3isBo-4FwuQHkG4M02AESm3kFft4Gttu-7PHUu027XNsG20_CGU2AEo11vrEaleWkjHYJdPO5YMVYI9m2609mW2PZltokEfZh5fhe7_D6Z_o1d1G-HwiYPvwiTDbMhLGESfKOFY7Jfr_hr_hsZRd</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wang, Chensi</creator><creator>Shao, Changxuan</creator><creator>Fang, Yuxin</creator><creator>Wang, Jiajun</creator><creator>Dong, Na</creator><creator>Shan, Anshan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-2830-7509</orcidid></search><sort><creationdate>20210401</creationdate><title>Binding loop of sunflower trypsin inhibitor 1 serves as a design motif for proteolysis-resistant antimicrobial peptides</title><author>Wang, Chensi ; Shao, Changxuan ; Fang, Yuxin ; Wang, Jiajun ; Dong, Na ; Shan, Anshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-e6fe16a7b3f014b67e98986f62a5edeb71862b610c721e0db503acfd581e3783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial peptides</topic><topic>Antimicrobial Peptides - chemistry</topic><topic>Bacterial diseases</topic><topic>Binding</topic><topic>Cell death</topic><topic>Cell membranes</topic><topic>Drug development</topic><topic>Gene expression</topic><topic>Helianthus</topic><topic>Helianthus - chemistry</topic><topic>Helianthus - metabolism</topic><topic>IL-1β</topic><topic>Infections</topic><topic>Inflammation</topic><topic>Interleukin 6</topic><topic>Lipopolysaccharides</topic><topic>Membrane permeability</topic><topic>Mice</topic><topic>Microbial Sensitivity Tests</topic><topic>mRNA</topic><topic>Papain</topic><topic>Pepsin</topic><topic>Peptides</topic><topic>Pore Forming Cytotoxic Proteins</topic><topic>Protease stability</topic><topic>Proteolysis</topic><topic>Pseudomonas aeruginosa</topic><topic>Selectivity</topic><topic>SFTI-1</topic><topic>Skin inflammation</topic><topic>Structure-function relationship</topic><topic>Sunflowers</topic><topic>Toxicity</topic><topic>Toxicity testing</topic><topic>Trypsin</topic><topic>Trypsin - metabolism</topic><topic>Trypsin Inhibitors</topic><topic>Tumor necrosis factor-α</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chensi</creatorcontrib><creatorcontrib>Shao, Changxuan</creatorcontrib><creatorcontrib>Fang, Yuxin</creatorcontrib><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Dong, Na</creatorcontrib><creatorcontrib>Shan, Anshan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chensi</au><au>Shao, Changxuan</au><au>Fang, Yuxin</au><au>Wang, Jiajun</au><au>Dong, Na</au><au>Shan, Anshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binding loop of sunflower trypsin inhibitor 1 serves as a design motif for proteolysis-resistant antimicrobial peptides</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>124</volume><spage>254</spage><epage>269</epage><pages>254-269</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Although antimicrobial peptides (AMPs) have become powerful drug candidates in the post-antibiotic era, but their low protease stability hinders their clinical application. In the present study, the natural sunflower trypsin inhibitor 1 (SFTI-1) binding loop (CTKSIPPIC) was used to design and synthesize a specific anti-proteolytic sequence template ((RX)n W (RX)n CTKSIPPIC (n = 2, 3; X represents A, I, L, V, F, and W)). After several antibacterial, bactericidal, and toxicity tests, RV3 stood out from the variants and had the highest average selectivity index (SI all = 156.03). It is highly stable in serum, varying pH, temperature, and salt ions as well as under high trypsin, pepsin, or papain concentrations. In a mouse skin inflammation model, established by Pseudomonas aeruginosa infection, RV3 could effectively kill the pathogen, promote wound healing, inhibit inflammatory cell infiltration, and inhibit mRNA and protein expression of TNF-α, IL-6, and IL-1β inflammatory factors. The antibacterial mechanisms of RV3 include combining with lipopolysaccharides and increasing cell membrane permeability, leading to cell membrane rupture and death. These findings indicate that RV3 has great potential for the treatment of bacterial infections.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33508505</pmid><doi>10.1016/j.actbio.2021.01.036</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2830-7509</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2021-04, Vol.124, p.254-269 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_journals_2516890066 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Anti-Bacterial Agents - pharmacology Antibiotics Antiinfectives and antibacterials Antimicrobial peptides Antimicrobial Peptides - chemistry Bacterial diseases Binding Cell death Cell membranes Drug development Gene expression Helianthus Helianthus - chemistry Helianthus - metabolism IL-1β Infections Inflammation Interleukin 6 Lipopolysaccharides Membrane permeability Mice Microbial Sensitivity Tests mRNA Papain Pepsin Peptides Pore Forming Cytotoxic Proteins Protease stability Proteolysis Pseudomonas aeruginosa Selectivity SFTI-1 Skin inflammation Structure-function relationship Sunflowers Toxicity Toxicity testing Trypsin Trypsin - metabolism Trypsin Inhibitors Tumor necrosis factor-α Wound healing |
title | Binding loop of sunflower trypsin inhibitor 1 serves as a design motif for proteolysis-resistant antimicrobial peptides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binding%20loop%20of%20sunflower%20trypsin%20inhibitor%201%20serves%20as%20a%20design%20motif%20for%20proteolysis-resistant%20antimicrobial%20peptides&rft.jtitle=Acta%20biomaterialia&rft.au=Wang,%20Chensi&rft.date=2021-04-01&rft.volume=124&rft.spage=254&rft.epage=269&rft.pages=254-269&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2021.01.036&rft_dat=%3Cproquest_cross%3E2516890066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516890066&rft_id=info:pmid/33508505&rft_els_id=S1742706121000647&rfr_iscdi=true |