Joint deep separable convolution network and border regression reinforcement for object detection
The improvement of object detection performance mainly depends on the extraction of local information near the target area of interest, which is also the main reason for the lack of feature semantic information. Considering the importance of scene and semantic information for visual recognition, in...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2021-05, Vol.33 (9), p.4299-4314 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4314 |
---|---|
container_issue | 9 |
container_start_page | 4299 |
container_title | Neural computing & applications |
container_volume | 33 |
creator | Quan, Yu Li, Zhixin Chen, Shengjia Zhang, Canlong Ma, Huifang |
description | The improvement of object detection performance mainly depends on the extraction of local information near the target area of interest, which is also the main reason for the lack of feature semantic information. Considering the importance of scene and semantic information for visual recognition, in this paper, the improvement of the object detection algorithm is realized from three parts. Firstly, the basic residual convolution module is fused with the separable convolution module to construct a depth-wise separable convolution network (D_SCNet-127 R-CNN). Then, the feature map is sent to the scene-level region proposal self-attention network to re-identify the candidate area. This part is composed of three parallel branches: semantic segmentation module, region proposal network, and region proposal self-attention module. Finally, this paper uses deep reinforcement learning combined with a border regression network to achieve precise location of the object, and improve the calculation speed of the entire model through a light-weight head network. This model can effectively solve the limitation of feature extraction in traditional object detection and obtain more comprehensive detailed features. The experimental on MSCOCO17, Pascal VOC07, and Cityscapes datasets shows that the proposed method has good validity and scalability. |
doi_str_mv | 10.1007/s00521-020-05255-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516608521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516608521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a2446777e146398c020b69a9ad957b46bd1df9d6ec0c043d36c96b431e2fdf023</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaLg-PgBVwHX1ZsmTZulDD4ZcKPrkCa3Q8eZpCYdxb83tYI7V-fAPQ_uIeSCwRUDqK8TQFWyAkooMqmqgh2QBROcFxyq5pAsQIl8loIfk5OUNgAgZFMtiHkKvR-pQxxowsFE026R2uA_wnY_9sFTj-NniG_UeEfbEB1GGnEdMaXpGrH3XYgWd5hjMqOh3aCdEscMWXJGjjqzTXj-i6fk9e72ZflQrJ7vH5c3q8JypsbClELIuq6RCclVY_MrrVRGGaequhWydcx1ykm0YEFwx6VVshWcYdm5Dkp-Si7n3CGG9z2mUW_CPvpcqcuKSQlNXiirylllY0gpYqeH2O9M_NIM9DSlnqfUuV__TKknE59NKYv9GuNf9D-ubyZ2d_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516608521</pqid></control><display><type>article</type><title>Joint deep separable convolution network and border regression reinforcement for object detection</title><source>Springer Nature - Complete Springer Journals</source><creator>Quan, Yu ; Li, Zhixin ; Chen, Shengjia ; Zhang, Canlong ; Ma, Huifang</creator><creatorcontrib>Quan, Yu ; Li, Zhixin ; Chen, Shengjia ; Zhang, Canlong ; Ma, Huifang</creatorcontrib><description>The improvement of object detection performance mainly depends on the extraction of local information near the target area of interest, which is also the main reason for the lack of feature semantic information. Considering the importance of scene and semantic information for visual recognition, in this paper, the improvement of the object detection algorithm is realized from three parts. Firstly, the basic residual convolution module is fused with the separable convolution module to construct a depth-wise separable convolution network (D_SCNet-127 R-CNN). Then, the feature map is sent to the scene-level region proposal self-attention network to re-identify the candidate area. This part is composed of three parallel branches: semantic segmentation module, region proposal network, and region proposal self-attention module. Finally, this paper uses deep reinforcement learning combined with a border regression network to achieve precise location of the object, and improve the calculation speed of the entire model through a light-weight head network. This model can effectively solve the limitation of feature extraction in traditional object detection and obtain more comprehensive detailed features. The experimental on MSCOCO17, Pascal VOC07, and Cityscapes datasets shows that the proposed method has good validity and scalability.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-020-05255-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Convolution ; Data Mining and Knowledge Discovery ; Feature extraction ; Feature maps ; Image Processing and Computer Vision ; Modules ; Object recognition ; Original Article ; Probability and Statistics in Computer Science ; Semantic segmentation ; Semantics ; Weight reduction</subject><ispartof>Neural computing & applications, 2021-05, Vol.33 (9), p.4299-4314</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a2446777e146398c020b69a9ad957b46bd1df9d6ec0c043d36c96b431e2fdf023</citedby><cites>FETCH-LOGICAL-c319t-a2446777e146398c020b69a9ad957b46bd1df9d6ec0c043d36c96b431e2fdf023</cites><orcidid>0000-0002-5313-6134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-020-05255-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-020-05255-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Quan, Yu</creatorcontrib><creatorcontrib>Li, Zhixin</creatorcontrib><creatorcontrib>Chen, Shengjia</creatorcontrib><creatorcontrib>Zhang, Canlong</creatorcontrib><creatorcontrib>Ma, Huifang</creatorcontrib><title>Joint deep separable convolution network and border regression reinforcement for object detection</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>The improvement of object detection performance mainly depends on the extraction of local information near the target area of interest, which is also the main reason for the lack of feature semantic information. Considering the importance of scene and semantic information for visual recognition, in this paper, the improvement of the object detection algorithm is realized from three parts. Firstly, the basic residual convolution module is fused with the separable convolution module to construct a depth-wise separable convolution network (D_SCNet-127 R-CNN). Then, the feature map is sent to the scene-level region proposal self-attention network to re-identify the candidate area. This part is composed of three parallel branches: semantic segmentation module, region proposal network, and region proposal self-attention module. Finally, this paper uses deep reinforcement learning combined with a border regression network to achieve precise location of the object, and improve the calculation speed of the entire model through a light-weight head network. This model can effectively solve the limitation of feature extraction in traditional object detection and obtain more comprehensive detailed features. The experimental on MSCOCO17, Pascal VOC07, and Cityscapes datasets shows that the proposed method has good validity and scalability.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Image Processing and Computer Vision</subject><subject>Modules</subject><subject>Object recognition</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Weight reduction</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UMtKxDAUDaLg-PgBVwHX1ZsmTZulDD4ZcKPrkCa3Q8eZpCYdxb83tYI7V-fAPQ_uIeSCwRUDqK8TQFWyAkooMqmqgh2QBROcFxyq5pAsQIl8loIfk5OUNgAgZFMtiHkKvR-pQxxowsFE026R2uA_wnY_9sFTj-NniG_UeEfbEB1GGnEdMaXpGrH3XYgWd5hjMqOh3aCdEscMWXJGjjqzTXj-i6fk9e72ZflQrJ7vH5c3q8JypsbClELIuq6RCclVY_MrrVRGGaequhWydcx1ykm0YEFwx6VVshWcYdm5Dkp-Si7n3CGG9z2mUW_CPvpcqcuKSQlNXiirylllY0gpYqeH2O9M_NIM9DSlnqfUuV__TKknE59NKYv9GuNf9D-ubyZ2d_A</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Quan, Yu</creator><creator>Li, Zhixin</creator><creator>Chen, Shengjia</creator><creator>Zhang, Canlong</creator><creator>Ma, Huifang</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5313-6134</orcidid></search><sort><creationdate>20210501</creationdate><title>Joint deep separable convolution network and border regression reinforcement for object detection</title><author>Quan, Yu ; Li, Zhixin ; Chen, Shengjia ; Zhang, Canlong ; Ma, Huifang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a2446777e146398c020b69a9ad957b46bd1df9d6ec0c043d36c96b431e2fdf023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Image Processing and Computer Vision</topic><topic>Modules</topic><topic>Object recognition</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quan, Yu</creatorcontrib><creatorcontrib>Li, Zhixin</creatorcontrib><creatorcontrib>Chen, Shengjia</creatorcontrib><creatorcontrib>Zhang, Canlong</creatorcontrib><creatorcontrib>Ma, Huifang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quan, Yu</au><au>Li, Zhixin</au><au>Chen, Shengjia</au><au>Zhang, Canlong</au><au>Ma, Huifang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint deep separable convolution network and border regression reinforcement for object detection</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>33</volume><issue>9</issue><spage>4299</spage><epage>4314</epage><pages>4299-4314</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>The improvement of object detection performance mainly depends on the extraction of local information near the target area of interest, which is also the main reason for the lack of feature semantic information. Considering the importance of scene and semantic information for visual recognition, in this paper, the improvement of the object detection algorithm is realized from three parts. Firstly, the basic residual convolution module is fused with the separable convolution module to construct a depth-wise separable convolution network (D_SCNet-127 R-CNN). Then, the feature map is sent to the scene-level region proposal self-attention network to re-identify the candidate area. This part is composed of three parallel branches: semantic segmentation module, region proposal network, and region proposal self-attention module. Finally, this paper uses deep reinforcement learning combined with a border regression network to achieve precise location of the object, and improve the calculation speed of the entire model through a light-weight head network. This model can effectively solve the limitation of feature extraction in traditional object detection and obtain more comprehensive detailed features. The experimental on MSCOCO17, Pascal VOC07, and Cityscapes datasets shows that the proposed method has good validity and scalability.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-020-05255-1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5313-6134</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2021-05, Vol.33 (9), p.4299-4314 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2516608521 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Convolution Data Mining and Knowledge Discovery Feature extraction Feature maps Image Processing and Computer Vision Modules Object recognition Original Article Probability and Statistics in Computer Science Semantic segmentation Semantics Weight reduction |
title | Joint deep separable convolution network and border regression reinforcement for object detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20deep%20separable%20convolution%20network%20and%20border%20regression%20reinforcement%20for%20object%20detection&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Quan,%20Yu&rft.date=2021-05-01&rft.volume=33&rft.issue=9&rft.spage=4299&rft.epage=4314&rft.pages=4299-4314&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-020-05255-1&rft_dat=%3Cproquest_cross%3E2516608521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516608521&rft_id=info:pmid/&rfr_iscdi=true |