Joint deep separable convolution network and border regression reinforcement for object detection

The improvement of object detection performance mainly depends on the extraction of local information near the target area of interest, which is also the main reason for the lack of feature semantic information. Considering the importance of scene and semantic information for visual recognition, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2021-05, Vol.33 (9), p.4299-4314
Hauptverfasser: Quan, Yu, Li, Zhixin, Chen, Shengjia, Zhang, Canlong, Ma, Huifang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4314
container_issue 9
container_start_page 4299
container_title Neural computing & applications
container_volume 33
creator Quan, Yu
Li, Zhixin
Chen, Shengjia
Zhang, Canlong
Ma, Huifang
description The improvement of object detection performance mainly depends on the extraction of local information near the target area of interest, which is also the main reason for the lack of feature semantic information. Considering the importance of scene and semantic information for visual recognition, in this paper, the improvement of the object detection algorithm is realized from three parts. Firstly, the basic residual convolution module is fused with the separable convolution module to construct a depth-wise separable convolution network (D_SCNet-127 R-CNN). Then, the feature map is sent to the scene-level region proposal self-attention network to re-identify the candidate area. This part is composed of three parallel branches: semantic segmentation module, region proposal network, and region proposal self-attention module. Finally, this paper uses deep reinforcement learning combined with a border regression network to achieve precise location of the object, and improve the calculation speed of the entire model through a light-weight head network. This model can effectively solve the limitation of feature extraction in traditional object detection and obtain more comprehensive detailed features. The experimental on MSCOCO17, Pascal VOC07, and Cityscapes datasets shows that the proposed method has good validity and scalability.
doi_str_mv 10.1007/s00521-020-05255-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516608521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516608521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a2446777e146398c020b69a9ad957b46bd1df9d6ec0c043d36c96b431e2fdf023</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaLg-PgBVwHX1ZsmTZulDD4ZcKPrkCa3Q8eZpCYdxb83tYI7V-fAPQ_uIeSCwRUDqK8TQFWyAkooMqmqgh2QBROcFxyq5pAsQIl8loIfk5OUNgAgZFMtiHkKvR-pQxxowsFE026R2uA_wnY_9sFTj-NniG_UeEfbEB1GGnEdMaXpGrH3XYgWd5hjMqOh3aCdEscMWXJGjjqzTXj-i6fk9e72ZflQrJ7vH5c3q8JypsbClELIuq6RCclVY_MrrVRGGaequhWydcx1ykm0YEFwx6VVshWcYdm5Dkp-Si7n3CGG9z2mUW_CPvpcqcuKSQlNXiirylllY0gpYqeH2O9M_NIM9DSlnqfUuV__TKknE59NKYv9GuNf9D-ubyZ2d_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516608521</pqid></control><display><type>article</type><title>Joint deep separable convolution network and border regression reinforcement for object detection</title><source>Springer Nature - Complete Springer Journals</source><creator>Quan, Yu ; Li, Zhixin ; Chen, Shengjia ; Zhang, Canlong ; Ma, Huifang</creator><creatorcontrib>Quan, Yu ; Li, Zhixin ; Chen, Shengjia ; Zhang, Canlong ; Ma, Huifang</creatorcontrib><description>The improvement of object detection performance mainly depends on the extraction of local information near the target area of interest, which is also the main reason for the lack of feature semantic information. Considering the importance of scene and semantic information for visual recognition, in this paper, the improvement of the object detection algorithm is realized from three parts. Firstly, the basic residual convolution module is fused with the separable convolution module to construct a depth-wise separable convolution network (D_SCNet-127 R-CNN). Then, the feature map is sent to the scene-level region proposal self-attention network to re-identify the candidate area. This part is composed of three parallel branches: semantic segmentation module, region proposal network, and region proposal self-attention module. Finally, this paper uses deep reinforcement learning combined with a border regression network to achieve precise location of the object, and improve the calculation speed of the entire model through a light-weight head network. This model can effectively solve the limitation of feature extraction in traditional object detection and obtain more comprehensive detailed features. The experimental on MSCOCO17, Pascal VOC07, and Cityscapes datasets shows that the proposed method has good validity and scalability.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-020-05255-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Convolution ; Data Mining and Knowledge Discovery ; Feature extraction ; Feature maps ; Image Processing and Computer Vision ; Modules ; Object recognition ; Original Article ; Probability and Statistics in Computer Science ; Semantic segmentation ; Semantics ; Weight reduction</subject><ispartof>Neural computing &amp; applications, 2021-05, Vol.33 (9), p.4299-4314</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a2446777e146398c020b69a9ad957b46bd1df9d6ec0c043d36c96b431e2fdf023</citedby><cites>FETCH-LOGICAL-c319t-a2446777e146398c020b69a9ad957b46bd1df9d6ec0c043d36c96b431e2fdf023</cites><orcidid>0000-0002-5313-6134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-020-05255-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-020-05255-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Quan, Yu</creatorcontrib><creatorcontrib>Li, Zhixin</creatorcontrib><creatorcontrib>Chen, Shengjia</creatorcontrib><creatorcontrib>Zhang, Canlong</creatorcontrib><creatorcontrib>Ma, Huifang</creatorcontrib><title>Joint deep separable convolution network and border regression reinforcement for object detection</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>The improvement of object detection performance mainly depends on the extraction of local information near the target area of interest, which is also the main reason for the lack of feature semantic information. Considering the importance of scene and semantic information for visual recognition, in this paper, the improvement of the object detection algorithm is realized from three parts. Firstly, the basic residual convolution module is fused with the separable convolution module to construct a depth-wise separable convolution network (D_SCNet-127 R-CNN). Then, the feature map is sent to the scene-level region proposal self-attention network to re-identify the candidate area. This part is composed of three parallel branches: semantic segmentation module, region proposal network, and region proposal self-attention module. Finally, this paper uses deep reinforcement learning combined with a border regression network to achieve precise location of the object, and improve the calculation speed of the entire model through a light-weight head network. This model can effectively solve the limitation of feature extraction in traditional object detection and obtain more comprehensive detailed features. The experimental on MSCOCO17, Pascal VOC07, and Cityscapes datasets shows that the proposed method has good validity and scalability.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Image Processing and Computer Vision</subject><subject>Modules</subject><subject>Object recognition</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Weight reduction</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UMtKxDAUDaLg-PgBVwHX1ZsmTZulDD4ZcKPrkCa3Q8eZpCYdxb83tYI7V-fAPQ_uIeSCwRUDqK8TQFWyAkooMqmqgh2QBROcFxyq5pAsQIl8loIfk5OUNgAgZFMtiHkKvR-pQxxowsFE026R2uA_wnY_9sFTj-NniG_UeEfbEB1GGnEdMaXpGrH3XYgWd5hjMqOh3aCdEscMWXJGjjqzTXj-i6fk9e72ZflQrJ7vH5c3q8JypsbClELIuq6RCclVY_MrrVRGGaequhWydcx1ykm0YEFwx6VVshWcYdm5Dkp-Si7n3CGG9z2mUW_CPvpcqcuKSQlNXiirylllY0gpYqeH2O9M_NIM9DSlnqfUuV__TKknE59NKYv9GuNf9D-ubyZ2d_A</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Quan, Yu</creator><creator>Li, Zhixin</creator><creator>Chen, Shengjia</creator><creator>Zhang, Canlong</creator><creator>Ma, Huifang</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5313-6134</orcidid></search><sort><creationdate>20210501</creationdate><title>Joint deep separable convolution network and border regression reinforcement for object detection</title><author>Quan, Yu ; Li, Zhixin ; Chen, Shengjia ; Zhang, Canlong ; Ma, Huifang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a2446777e146398c020b69a9ad957b46bd1df9d6ec0c043d36c96b431e2fdf023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Image Processing and Computer Vision</topic><topic>Modules</topic><topic>Object recognition</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quan, Yu</creatorcontrib><creatorcontrib>Li, Zhixin</creatorcontrib><creatorcontrib>Chen, Shengjia</creatorcontrib><creatorcontrib>Zhang, Canlong</creatorcontrib><creatorcontrib>Ma, Huifang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quan, Yu</au><au>Li, Zhixin</au><au>Chen, Shengjia</au><au>Zhang, Canlong</au><au>Ma, Huifang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint deep separable convolution network and border regression reinforcement for object detection</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>33</volume><issue>9</issue><spage>4299</spage><epage>4314</epage><pages>4299-4314</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>The improvement of object detection performance mainly depends on the extraction of local information near the target area of interest, which is also the main reason for the lack of feature semantic information. Considering the importance of scene and semantic information for visual recognition, in this paper, the improvement of the object detection algorithm is realized from three parts. Firstly, the basic residual convolution module is fused with the separable convolution module to construct a depth-wise separable convolution network (D_SCNet-127 R-CNN). Then, the feature map is sent to the scene-level region proposal self-attention network to re-identify the candidate area. This part is composed of three parallel branches: semantic segmentation module, region proposal network, and region proposal self-attention module. Finally, this paper uses deep reinforcement learning combined with a border regression network to achieve precise location of the object, and improve the calculation speed of the entire model through a light-weight head network. This model can effectively solve the limitation of feature extraction in traditional object detection and obtain more comprehensive detailed features. The experimental on MSCOCO17, Pascal VOC07, and Cityscapes datasets shows that the proposed method has good validity and scalability.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-020-05255-1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5313-6134</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2021-05, Vol.33 (9), p.4299-4314
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2516608521
source Springer Nature - Complete Springer Journals
subjects Algorithms
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Convolution
Data Mining and Knowledge Discovery
Feature extraction
Feature maps
Image Processing and Computer Vision
Modules
Object recognition
Original Article
Probability and Statistics in Computer Science
Semantic segmentation
Semantics
Weight reduction
title Joint deep separable convolution network and border regression reinforcement for object detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20deep%20separable%20convolution%20network%20and%20border%20regression%20reinforcement%20for%20object%20detection&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Quan,%20Yu&rft.date=2021-05-01&rft.volume=33&rft.issue=9&rft.spage=4299&rft.epage=4314&rft.pages=4299-4314&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-020-05255-1&rft_dat=%3Cproquest_cross%3E2516608521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516608521&rft_id=info:pmid/&rfr_iscdi=true