Metallic phase transition metal dichalcogenide quantum dots showing different optical charge excitation and decay pathways

The charge excitation and decay pathways of two-dimensional heteroatomic quantum dots (QDs) are affected by the quantum confinement effect, bandgap structure and strong exciton binding energy. Recently, semiconducting transition metal dichalcogenides (TMDs) have been intensively studied; however, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPG Asia materials 2021-04, Vol.13 (1), Article 41
Hauptverfasser: Kim, Bo-Hyun, Jang, Min-Ho, Yoon, Hyewon, Kim, Hyun Jun, Cho, Yong-Hoon, Jeon, Seokwoo, Song, Sung-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title NPG Asia materials
container_volume 13
creator Kim, Bo-Hyun
Jang, Min-Ho
Yoon, Hyewon
Kim, Hyun Jun
Cho, Yong-Hoon
Jeon, Seokwoo
Song, Sung-Ho
description The charge excitation and decay pathways of two-dimensional heteroatomic quantum dots (QDs) are affected by the quantum confinement effect, bandgap structure and strong exciton binding energy. Recently, semiconducting transition metal dichalcogenides (TMDs) have been intensively studied; however, the charge dynamics of metallic phase QDs ( m QDs) of TMDs remain relatively unknown. Herein, we investigate the photophysical properties of TMD- m QDs of two sizes, where the TMD- m QDs show different charge excitation and decay pathways that are mainly ascribed to the defect states and valence band splitting, resulting in a large Stokes shift and two excitation bands for maximum photoluminescence (PL). Interestingly, the dominant excitation band redshifts as the size increases, and the time-resolved PL peak redshifts at an excitation wavelength of 266 nm in the smaller QDs. Additionally, the lifetime is shortened in the larger QDs. From the structural and theoretical analysis, we discuss that the charge decay pathway in the smaller QDs is predominantly affected by edge oxidation, whereas the vacancies play an important role in the larger QDs. Metallic phase transition metal dichalcogenides quantum dots show different pathways of optical charge excitation and decay according to the size and sort of defects, resulting into the large Stoke shift, two bands for charge excitation, and TRPL peak shift. This result is mainly ascribed to the valance band splitting and the emerging defect states originated from atomic vacancy of basal plane and edge oxidation.
doi_str_mv 10.1038/s41427-021-00305-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516596551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516596551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b35e1a6731f091ebaa93cfa470df04eba42031910c2cd4ecf3f6921d41e9c95b3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEhX0B1hZYh2wYzuPJap4SUVsYG25zjhxlTqp7ai0X4_bINixGo98zx3pJMkNwXcE0_LeM8KyIsUZSTGmmKeHs2RGypKlDPPi_PfNqstk7v0aY0zynJWczZLDGwTZdUahoZUeUHDSehNMb9Hm-INqo1rZqb4Ba2pA21HaMG5Q3QePfNvvjG1iRmtwYAPqh2BUpCLjGkDwpUyQpzZpa1SDkns0yNDu5N5fJxdadh7mP_Mq-Xx6_Fi8pMv359fFwzJVNKchXVEOROYFJRpXBFZSVlRpyQpca8zizjJMSUWwylTNQGmq8yojNSNQqYqv6FVyO_UOrt-O4INY96Oz8aTIOMl5lXNOYiqbUsr13jvQYnBmI91eECyOmsWkWUTN4qRZHCJEJ8jHsG3A_VX_Q30D8VODpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516596551</pqid></control><display><type>article</type><title>Metallic phase transition metal dichalcogenide quantum dots showing different optical charge excitation and decay pathways</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Bo-Hyun ; Jang, Min-Ho ; Yoon, Hyewon ; Kim, Hyun Jun ; Cho, Yong-Hoon ; Jeon, Seokwoo ; Song, Sung-Ho</creator><creatorcontrib>Kim, Bo-Hyun ; Jang, Min-Ho ; Yoon, Hyewon ; Kim, Hyun Jun ; Cho, Yong-Hoon ; Jeon, Seokwoo ; Song, Sung-Ho</creatorcontrib><description>The charge excitation and decay pathways of two-dimensional heteroatomic quantum dots (QDs) are affected by the quantum confinement effect, bandgap structure and strong exciton binding energy. Recently, semiconducting transition metal dichalcogenides (TMDs) have been intensively studied; however, the charge dynamics of metallic phase QDs ( m QDs) of TMDs remain relatively unknown. Herein, we investigate the photophysical properties of TMD- m QDs of two sizes, where the TMD- m QDs show different charge excitation and decay pathways that are mainly ascribed to the defect states and valence band splitting, resulting in a large Stokes shift and two excitation bands for maximum photoluminescence (PL). Interestingly, the dominant excitation band redshifts as the size increases, and the time-resolved PL peak redshifts at an excitation wavelength of 266 nm in the smaller QDs. Additionally, the lifetime is shortened in the larger QDs. From the structural and theoretical analysis, we discuss that the charge decay pathway in the smaller QDs is predominantly affected by edge oxidation, whereas the vacancies play an important role in the larger QDs. Metallic phase transition metal dichalcogenides quantum dots show different pathways of optical charge excitation and decay according to the size and sort of defects, resulting into the large Stoke shift, two bands for charge excitation, and TRPL peak shift. This result is mainly ascribed to the valance band splitting and the emerging defect states originated from atomic vacancy of basal plane and edge oxidation.</description><identifier>ISSN: 1884-4049</identifier><identifier>EISSN: 1884-4057</identifier><identifier>DOI: 10.1038/s41427-021-00305-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 140/133 ; 140/146 ; 639/301/1019/385 ; 639/301/357/1017 ; 639/624/399/1017 ; 639/925/357/1018 ; Basal plane ; Biomaterials ; Chalcogenides ; Chemistry and Materials Science ; Decay ; Energy Systems ; Excitation ; Excitons ; Materials Science ; Optical and Electronic Materials ; Oxidation ; Phase transitions ; Photoluminescence ; Quantum confinement ; Quantum dots ; Splitting ; Structural Materials ; Surface and Interface Science ; Thin Films ; Transition metal compounds ; Vacancies ; Valence band</subject><ispartof>NPG Asia materials, 2021-04, Vol.13 (1), Article 41</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b35e1a6731f091ebaa93cfa470df04eba42031910c2cd4ecf3f6921d41e9c95b3</citedby><cites>FETCH-LOGICAL-c363t-b35e1a6731f091ebaa93cfa470df04eba42031910c2cd4ecf3f6921d41e9c95b3</cites><orcidid>0000-0002-3685-0184 ; 0000-0002-6085-9381 ; 0000-0002-5338-0671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41427-021-00305-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41427-021-00305-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Kim, Bo-Hyun</creatorcontrib><creatorcontrib>Jang, Min-Ho</creatorcontrib><creatorcontrib>Yoon, Hyewon</creatorcontrib><creatorcontrib>Kim, Hyun Jun</creatorcontrib><creatorcontrib>Cho, Yong-Hoon</creatorcontrib><creatorcontrib>Jeon, Seokwoo</creatorcontrib><creatorcontrib>Song, Sung-Ho</creatorcontrib><title>Metallic phase transition metal dichalcogenide quantum dots showing different optical charge excitation and decay pathways</title><title>NPG Asia materials</title><addtitle>NPG Asia Mater</addtitle><description>The charge excitation and decay pathways of two-dimensional heteroatomic quantum dots (QDs) are affected by the quantum confinement effect, bandgap structure and strong exciton binding energy. Recently, semiconducting transition metal dichalcogenides (TMDs) have been intensively studied; however, the charge dynamics of metallic phase QDs ( m QDs) of TMDs remain relatively unknown. Herein, we investigate the photophysical properties of TMD- m QDs of two sizes, where the TMD- m QDs show different charge excitation and decay pathways that are mainly ascribed to the defect states and valence band splitting, resulting in a large Stokes shift and two excitation bands for maximum photoluminescence (PL). Interestingly, the dominant excitation band redshifts as the size increases, and the time-resolved PL peak redshifts at an excitation wavelength of 266 nm in the smaller QDs. Additionally, the lifetime is shortened in the larger QDs. From the structural and theoretical analysis, we discuss that the charge decay pathway in the smaller QDs is predominantly affected by edge oxidation, whereas the vacancies play an important role in the larger QDs. Metallic phase transition metal dichalcogenides quantum dots show different pathways of optical charge excitation and decay according to the size and sort of defects, resulting into the large Stoke shift, two bands for charge excitation, and TRPL peak shift. This result is mainly ascribed to the valance band splitting and the emerging defect states originated from atomic vacancy of basal plane and edge oxidation.</description><subject>140/125</subject><subject>140/133</subject><subject>140/146</subject><subject>639/301/1019/385</subject><subject>639/301/357/1017</subject><subject>639/624/399/1017</subject><subject>639/925/357/1018</subject><subject>Basal plane</subject><subject>Biomaterials</subject><subject>Chalcogenides</subject><subject>Chemistry and Materials Science</subject><subject>Decay</subject><subject>Energy Systems</subject><subject>Excitation</subject><subject>Excitons</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Oxidation</subject><subject>Phase transitions</subject><subject>Photoluminescence</subject><subject>Quantum confinement</subject><subject>Quantum dots</subject><subject>Splitting</subject><subject>Structural Materials</subject><subject>Surface and Interface Science</subject><subject>Thin Films</subject><subject>Transition metal compounds</subject><subject>Vacancies</subject><subject>Valence band</subject><issn>1884-4049</issn><issn>1884-4057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOwzAQRSMEEhX0B1hZYh2wYzuPJap4SUVsYG25zjhxlTqp7ai0X4_bINixGo98zx3pJMkNwXcE0_LeM8KyIsUZSTGmmKeHs2RGypKlDPPi_PfNqstk7v0aY0zynJWczZLDGwTZdUahoZUeUHDSehNMb9Hm-INqo1rZqb4Ba2pA21HaMG5Q3QePfNvvjG1iRmtwYAPqh2BUpCLjGkDwpUyQpzZpa1SDkns0yNDu5N5fJxdadh7mP_Mq-Xx6_Fi8pMv359fFwzJVNKchXVEOROYFJRpXBFZSVlRpyQpca8zizjJMSUWwylTNQGmq8yojNSNQqYqv6FVyO_UOrt-O4INY96Oz8aTIOMl5lXNOYiqbUsr13jvQYnBmI91eECyOmsWkWUTN4qRZHCJEJ8jHsG3A_VX_Q30D8VODpw</recordid><startdate>20210423</startdate><enddate>20210423</enddate><creator>Kim, Bo-Hyun</creator><creator>Jang, Min-Ho</creator><creator>Yoon, Hyewon</creator><creator>Kim, Hyun Jun</creator><creator>Cho, Yong-Hoon</creator><creator>Jeon, Seokwoo</creator><creator>Song, Sung-Ho</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3685-0184</orcidid><orcidid>https://orcid.org/0000-0002-6085-9381</orcidid><orcidid>https://orcid.org/0000-0002-5338-0671</orcidid></search><sort><creationdate>20210423</creationdate><title>Metallic phase transition metal dichalcogenide quantum dots showing different optical charge excitation and decay pathways</title><author>Kim, Bo-Hyun ; Jang, Min-Ho ; Yoon, Hyewon ; Kim, Hyun Jun ; Cho, Yong-Hoon ; Jeon, Seokwoo ; Song, Sung-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b35e1a6731f091ebaa93cfa470df04eba42031910c2cd4ecf3f6921d41e9c95b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>140/125</topic><topic>140/133</topic><topic>140/146</topic><topic>639/301/1019/385</topic><topic>639/301/357/1017</topic><topic>639/624/399/1017</topic><topic>639/925/357/1018</topic><topic>Basal plane</topic><topic>Biomaterials</topic><topic>Chalcogenides</topic><topic>Chemistry and Materials Science</topic><topic>Decay</topic><topic>Energy Systems</topic><topic>Excitation</topic><topic>Excitons</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Oxidation</topic><topic>Phase transitions</topic><topic>Photoluminescence</topic><topic>Quantum confinement</topic><topic>Quantum dots</topic><topic>Splitting</topic><topic>Structural Materials</topic><topic>Surface and Interface Science</topic><topic>Thin Films</topic><topic>Transition metal compounds</topic><topic>Vacancies</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Bo-Hyun</creatorcontrib><creatorcontrib>Jang, Min-Ho</creatorcontrib><creatorcontrib>Yoon, Hyewon</creatorcontrib><creatorcontrib>Kim, Hyun Jun</creatorcontrib><creatorcontrib>Cho, Yong-Hoon</creatorcontrib><creatorcontrib>Jeon, Seokwoo</creatorcontrib><creatorcontrib>Song, Sung-Ho</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>NPG Asia materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Bo-Hyun</au><au>Jang, Min-Ho</au><au>Yoon, Hyewon</au><au>Kim, Hyun Jun</au><au>Cho, Yong-Hoon</au><au>Jeon, Seokwoo</au><au>Song, Sung-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metallic phase transition metal dichalcogenide quantum dots showing different optical charge excitation and decay pathways</atitle><jtitle>NPG Asia materials</jtitle><stitle>NPG Asia Mater</stitle><date>2021-04-23</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><artnum>41</artnum><issn>1884-4049</issn><eissn>1884-4057</eissn><abstract>The charge excitation and decay pathways of two-dimensional heteroatomic quantum dots (QDs) are affected by the quantum confinement effect, bandgap structure and strong exciton binding energy. Recently, semiconducting transition metal dichalcogenides (TMDs) have been intensively studied; however, the charge dynamics of metallic phase QDs ( m QDs) of TMDs remain relatively unknown. Herein, we investigate the photophysical properties of TMD- m QDs of two sizes, where the TMD- m QDs show different charge excitation and decay pathways that are mainly ascribed to the defect states and valence band splitting, resulting in a large Stokes shift and two excitation bands for maximum photoluminescence (PL). Interestingly, the dominant excitation band redshifts as the size increases, and the time-resolved PL peak redshifts at an excitation wavelength of 266 nm in the smaller QDs. Additionally, the lifetime is shortened in the larger QDs. From the structural and theoretical analysis, we discuss that the charge decay pathway in the smaller QDs is predominantly affected by edge oxidation, whereas the vacancies play an important role in the larger QDs. Metallic phase transition metal dichalcogenides quantum dots show different pathways of optical charge excitation and decay according to the size and sort of defects, resulting into the large Stoke shift, two bands for charge excitation, and TRPL peak shift. This result is mainly ascribed to the valance band splitting and the emerging defect states originated from atomic vacancy of basal plane and edge oxidation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41427-021-00305-z</doi><orcidid>https://orcid.org/0000-0002-3685-0184</orcidid><orcidid>https://orcid.org/0000-0002-6085-9381</orcidid><orcidid>https://orcid.org/0000-0002-5338-0671</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1884-4049
ispartof NPG Asia materials, 2021-04, Vol.13 (1), Article 41
issn 1884-4049
1884-4057
language eng
recordid cdi_proquest_journals_2516596551
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; Free Full-Text Journals in Chemistry
subjects 140/125
140/133
140/146
639/301/1019/385
639/301/357/1017
639/624/399/1017
639/925/357/1018
Basal plane
Biomaterials
Chalcogenides
Chemistry and Materials Science
Decay
Energy Systems
Excitation
Excitons
Materials Science
Optical and Electronic Materials
Oxidation
Phase transitions
Photoluminescence
Quantum confinement
Quantum dots
Splitting
Structural Materials
Surface and Interface Science
Thin Films
Transition metal compounds
Vacancies
Valence band
title Metallic phase transition metal dichalcogenide quantum dots showing different optical charge excitation and decay pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metallic%20phase%20transition%20metal%20dichalcogenide%20quantum%20dots%20showing%20different%20optical%20charge%20excitation%20and%20decay%20pathways&rft.jtitle=NPG%20Asia%20materials&rft.au=Kim,%20Bo-Hyun&rft.date=2021-04-23&rft.volume=13&rft.issue=1&rft.artnum=41&rft.issn=1884-4049&rft.eissn=1884-4057&rft_id=info:doi/10.1038/s41427-021-00305-z&rft_dat=%3Cproquest_cross%3E2516596551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516596551&rft_id=info:pmid/&rfr_iscdi=true