Global Classical Solutions to the 3D Density-Dependent Viscosity Compressible Navier-Stokes Equations with Navier-Slip Boundary Condition in a Simply Connected Bounded Domain
This paper concerns the global existence for classical solutions problem to the 3D Density-Dependent Viscosity barotropic compressible Navier-Stokes in \(\Omega\) with slip boundary condition, where \(\Omega\) is a simply connected bounded \(C^{\infty}\) domain in \(\mathbb{R}^3\) and its boundary o...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-04 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cao, Yuebo |
description | This paper concerns the global existence for classical solutions problem to the 3D Density-Dependent Viscosity barotropic compressible Navier-Stokes in \(\Omega\) with slip boundary condition, where \(\Omega\) is a simply connected bounded \(C^{\infty}\) domain in \(\mathbb{R}^3\) and its boundary only has a finite number of 2-dimensional connected components. By a series of a priori estimates, we show that the classical solution to the system exists globally in time under the assumption that the initial energy is suitably small. The initial density of such a classical solution is allowed to have large oscillations and contain vacuum states. We also adopt some new techniques and methods to obtain necessary a priori estimates, especially the boundary integral terms estimates. This is the first result concerning the global existence of classical solutions to the compressible Navier-Stokes equations with density containing vacuum initially and viscosity coefficients depending on density for general 3D bounded smooth domains. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2516594394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516594394</sourcerecordid><originalsourceid>FETCH-proquest_journals_25165943943</originalsourceid><addsrcrecordid>eNqNjE9Lw0AQxYMgWLTfYcBzIN1tql5Nqp68RLyWbTLSqZuZ7f5R_FJ-RjdWehYG3vDe772zYqa0XpS3S6UuinkI-6qq1OpG1bWeFd-PVrbGQmNNCNTnrxObIgkHiAJxh6BbaJEDxa-yRYc8IEd4pdDL5EEjo_OYy1uL8Gw-CH3ZRXnHAOtDMsepT4q7U2jJwb0kHoyf6jzQBAExGOhodPbXZewjDkcwayujIb4qzt-MDTj_08vi-mH90jyVzsshYYibvSTPOdqoerGq75Y63_-oH1osYa4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516594394</pqid></control><display><type>article</type><title>Global Classical Solutions to the 3D Density-Dependent Viscosity Compressible Navier-Stokes Equations with Navier-Slip Boundary Condition in a Simply Connected Bounded Domain</title><source>Free E- Journals</source><creator>Cao, Yuebo</creator><creatorcontrib>Cao, Yuebo</creatorcontrib><description>This paper concerns the global existence for classical solutions problem to the 3D Density-Dependent Viscosity barotropic compressible Navier-Stokes in \(\Omega\) with slip boundary condition, where \(\Omega\) is a simply connected bounded \(C^{\infty}\) domain in \(\mathbb{R}^3\) and its boundary only has a finite number of 2-dimensional connected components. By a series of a priori estimates, we show that the classical solution to the system exists globally in time under the assumption that the initial energy is suitably small. The initial density of such a classical solution is allowed to have large oscillations and contain vacuum states. We also adopt some new techniques and methods to obtain necessary a priori estimates, especially the boundary integral terms estimates. This is the first result concerning the global existence of classical solutions to the compressible Navier-Stokes equations with density containing vacuum initially and viscosity coefficients depending on density for general 3D bounded smooth domains.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Compressibility ; Density ; Domains ; Estimates ; Fluid dynamics ; Fluid flow ; Linear equations ; Mathematical analysis ; Navier-Stokes equations ; Slip ; Viscosity</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Cao, Yuebo</creatorcontrib><title>Global Classical Solutions to the 3D Density-Dependent Viscosity Compressible Navier-Stokes Equations with Navier-Slip Boundary Condition in a Simply Connected Bounded Domain</title><title>arXiv.org</title><description>This paper concerns the global existence for classical solutions problem to the 3D Density-Dependent Viscosity barotropic compressible Navier-Stokes in \(\Omega\) with slip boundary condition, where \(\Omega\) is a simply connected bounded \(C^{\infty}\) domain in \(\mathbb{R}^3\) and its boundary only has a finite number of 2-dimensional connected components. By a series of a priori estimates, we show that the classical solution to the system exists globally in time under the assumption that the initial energy is suitably small. The initial density of such a classical solution is allowed to have large oscillations and contain vacuum states. We also adopt some new techniques and methods to obtain necessary a priori estimates, especially the boundary integral terms estimates. This is the first result concerning the global existence of classical solutions to the compressible Navier-Stokes equations with density containing vacuum initially and viscosity coefficients depending on density for general 3D bounded smooth domains.</description><subject>Boundary conditions</subject><subject>Compressibility</subject><subject>Density</subject><subject>Domains</subject><subject>Estimates</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Navier-Stokes equations</subject><subject>Slip</subject><subject>Viscosity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjE9Lw0AQxYMgWLTfYcBzIN1tql5Nqp68RLyWbTLSqZuZ7f5R_FJ-RjdWehYG3vDe772zYqa0XpS3S6UuinkI-6qq1OpG1bWeFd-PVrbGQmNNCNTnrxObIgkHiAJxh6BbaJEDxa-yRYc8IEd4pdDL5EEjo_OYy1uL8Gw-CH3ZRXnHAOtDMsepT4q7U2jJwb0kHoyf6jzQBAExGOhodPbXZewjDkcwayujIb4qzt-MDTj_08vi-mH90jyVzsshYYibvSTPOdqoerGq75Y63_-oH1osYa4</recordid><startdate>20210421</startdate><enddate>20210421</enddate><creator>Cao, Yuebo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210421</creationdate><title>Global Classical Solutions to the 3D Density-Dependent Viscosity Compressible Navier-Stokes Equations with Navier-Slip Boundary Condition in a Simply Connected Bounded Domain</title><author>Cao, Yuebo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25165943943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Compressibility</topic><topic>Density</topic><topic>Domains</topic><topic>Estimates</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Navier-Stokes equations</topic><topic>Slip</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yuebo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yuebo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Global Classical Solutions to the 3D Density-Dependent Viscosity Compressible Navier-Stokes Equations with Navier-Slip Boundary Condition in a Simply Connected Bounded Domain</atitle><jtitle>arXiv.org</jtitle><date>2021-04-21</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>This paper concerns the global existence for classical solutions problem to the 3D Density-Dependent Viscosity barotropic compressible Navier-Stokes in \(\Omega\) with slip boundary condition, where \(\Omega\) is a simply connected bounded \(C^{\infty}\) domain in \(\mathbb{R}^3\) and its boundary only has a finite number of 2-dimensional connected components. By a series of a priori estimates, we show that the classical solution to the system exists globally in time under the assumption that the initial energy is suitably small. The initial density of such a classical solution is allowed to have large oscillations and contain vacuum states. We also adopt some new techniques and methods to obtain necessary a priori estimates, especially the boundary integral terms estimates. This is the first result concerning the global existence of classical solutions to the compressible Navier-Stokes equations with density containing vacuum initially and viscosity coefficients depending on density for general 3D bounded smooth domains.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2516594394 |
source | Free E- Journals |
subjects | Boundary conditions Compressibility Density Domains Estimates Fluid dynamics Fluid flow Linear equations Mathematical analysis Navier-Stokes equations Slip Viscosity |
title | Global Classical Solutions to the 3D Density-Dependent Viscosity Compressible Navier-Stokes Equations with Navier-Slip Boundary Condition in a Simply Connected Bounded Domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Global%20Classical%20Solutions%20to%20the%203D%20Density-Dependent%20Viscosity%20Compressible%20Navier-Stokes%20Equations%20with%20Navier-Slip%20Boundary%20Condition%20in%20a%20Simply%20Connected%20Bounded%20Domain&rft.jtitle=arXiv.org&rft.au=Cao,%20Yuebo&rft.date=2021-04-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2516594394%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516594394&rft_id=info:pmid/&rfr_iscdi=true |