Application of machine learning for predicting strong phonon blockade

Observing the phonon blockade in a nanomechanical oscillator is clear evidence of its quantum nature. However, it is still a severe challenge to measure the strong phonon blockade in an optomechanical system with effective nonlinear coupling. In this paper, we put forward a theoretical proposal for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-04, Vol.118 (16), p.164003
Hauptverfasser: Zeng, Ye-Xiong, Gebremariam, Tesfay, Shen, Jian, Xiong, Biao, Li, Chong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 164003
container_title Applied physics letters
container_volume 118
creator Zeng, Ye-Xiong
Gebremariam, Tesfay
Shen, Jian
Xiong, Biao
Li, Chong
description Observing the phonon blockade in a nanomechanical oscillator is clear evidence of its quantum nature. However, it is still a severe challenge to measure the strong phonon blockade in an optomechanical system with effective nonlinear coupling. In this paper, we put forward a theoretical proposal for predicting the phonon blockade effect in a quadratically coupled optomechanical system by exploiting supervised machine learning. The detected optical signals are injected into the neural network as the input, while the output is the mechanical equal-time second-order correlation. Our results show that our scheme has great advantages in predicting phonon blockade. Specifically, it is effective and feasible for nonlinear coupling systems; it shows a high precision for predicting strong phonon blockade; it is robust against the slight disturbance of systemic parameters. The trained neural network is convenient for measuring phonon blockade directly in the experiment. Our work provides a promising way to predict phonon blockade in nonlinear coupled quantum systems.
doi_str_mv 10.1063/5.0035498
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516453541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516453541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-2957beef9be428e7b9e6a06f85e5dedf04743c919599c405de768475e767d2783</originalsourceid><addsrcrecordid>eNqdkE9LAzEQxYMoWKsHv8GCJ4WtySbZbI6l1D9Q8KLnkM1ObOp2E5Ot4Lc3tQXvnh7v8ZsZ5iF0TfCM4Jre8xnGlDPZnKAJwUKUlJDmFE1wjstacnKOLlLaZMsrSidoOQ-hd0aPzg-Ft8VWm7UboOhBx8EN74X1sQgROmfGvU1j9FnC2g95oO29-dAdXKIzq_sEV0edoreH5eviqVy9PD4v5qvS0EqMZSW5aAGsbIFVDYhWQq1xbRsOvIPOYiYYNZJILqVhOGeibpjgWURXiYZO0c1hb4j-cwdpVBu_i0M-qSpOasbz6yRTtwfKRJ9SBKtCdFsdvxXBat-S4urYUmbvDmwybvxt4X_wl49_oAqdpT-NanUF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516453541</pqid></control><display><type>article</type><title>Application of machine learning for predicting strong phonon blockade</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zeng, Ye-Xiong ; Gebremariam, Tesfay ; Shen, Jian ; Xiong, Biao ; Li, Chong</creator><creatorcontrib>Zeng, Ye-Xiong ; Gebremariam, Tesfay ; Shen, Jian ; Xiong, Biao ; Li, Chong</creatorcontrib><description>Observing the phonon blockade in a nanomechanical oscillator is clear evidence of its quantum nature. However, it is still a severe challenge to measure the strong phonon blockade in an optomechanical system with effective nonlinear coupling. In this paper, we put forward a theoretical proposal for predicting the phonon blockade effect in a quadratically coupled optomechanical system by exploiting supervised machine learning. The detected optical signals are injected into the neural network as the input, while the output is the mechanical equal-time second-order correlation. Our results show that our scheme has great advantages in predicting phonon blockade. Specifically, it is effective and feasible for nonlinear coupling systems; it shows a high precision for predicting strong phonon blockade; it is robust against the slight disturbance of systemic parameters. The trained neural network is convenient for measuring phonon blockade directly in the experiment. Our work provides a promising way to predict phonon blockade in nonlinear coupled quantum systems.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0035498</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Coupling ; Machine learning ; Neural networks ; Nonlinear systems ; Optical communication ; Phonons ; System effectiveness</subject><ispartof>Applied physics letters, 2021-04, Vol.118 (16), p.164003</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-2957beef9be428e7b9e6a06f85e5dedf04743c919599c405de768475e767d2783</citedby><cites>FETCH-LOGICAL-c327t-2957beef9be428e7b9e6a06f85e5dedf04743c919599c405de768475e767d2783</cites><orcidid>0000-0002-5982-8983 ; 0000-0003-4627-7307 ; 0000-0003-4634-3132 ; 0000-0001-9165-3995 ; 0000-0002-6198-407X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0035498$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,778,782,792,4500,27907,27908,76135</link.rule.ids></links><search><creatorcontrib>Zeng, Ye-Xiong</creatorcontrib><creatorcontrib>Gebremariam, Tesfay</creatorcontrib><creatorcontrib>Shen, Jian</creatorcontrib><creatorcontrib>Xiong, Biao</creatorcontrib><creatorcontrib>Li, Chong</creatorcontrib><title>Application of machine learning for predicting strong phonon blockade</title><title>Applied physics letters</title><description>Observing the phonon blockade in a nanomechanical oscillator is clear evidence of its quantum nature. However, it is still a severe challenge to measure the strong phonon blockade in an optomechanical system with effective nonlinear coupling. In this paper, we put forward a theoretical proposal for predicting the phonon blockade effect in a quadratically coupled optomechanical system by exploiting supervised machine learning. The detected optical signals are injected into the neural network as the input, while the output is the mechanical equal-time second-order correlation. Our results show that our scheme has great advantages in predicting phonon blockade. Specifically, it is effective and feasible for nonlinear coupling systems; it shows a high precision for predicting strong phonon blockade; it is robust against the slight disturbance of systemic parameters. The trained neural network is convenient for measuring phonon blockade directly in the experiment. Our work provides a promising way to predict phonon blockade in nonlinear coupled quantum systems.</description><subject>Applied physics</subject><subject>Coupling</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Optical communication</subject><subject>Phonons</subject><subject>System effectiveness</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdkE9LAzEQxYMoWKsHv8GCJ4WtySbZbI6l1D9Q8KLnkM1ObOp2E5Ot4Lc3tQXvnh7v8ZsZ5iF0TfCM4Jre8xnGlDPZnKAJwUKUlJDmFE1wjstacnKOLlLaZMsrSidoOQ-hd0aPzg-Ft8VWm7UboOhBx8EN74X1sQgROmfGvU1j9FnC2g95oO29-dAdXKIzq_sEV0edoreH5eviqVy9PD4v5qvS0EqMZSW5aAGsbIFVDYhWQq1xbRsOvIPOYiYYNZJILqVhOGeibpjgWURXiYZO0c1hb4j-cwdpVBu_i0M-qSpOasbz6yRTtwfKRJ9SBKtCdFsdvxXBat-S4urYUmbvDmwybvxt4X_wl49_oAqdpT-NanUF</recordid><startdate>20210419</startdate><enddate>20210419</enddate><creator>Zeng, Ye-Xiong</creator><creator>Gebremariam, Tesfay</creator><creator>Shen, Jian</creator><creator>Xiong, Biao</creator><creator>Li, Chong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5982-8983</orcidid><orcidid>https://orcid.org/0000-0003-4627-7307</orcidid><orcidid>https://orcid.org/0000-0003-4634-3132</orcidid><orcidid>https://orcid.org/0000-0001-9165-3995</orcidid><orcidid>https://orcid.org/0000-0002-6198-407X</orcidid></search><sort><creationdate>20210419</creationdate><title>Application of machine learning for predicting strong phonon blockade</title><author>Zeng, Ye-Xiong ; Gebremariam, Tesfay ; Shen, Jian ; Xiong, Biao ; Li, Chong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-2957beef9be428e7b9e6a06f85e5dedf04743c919599c405de768475e767d2783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Coupling</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Optical communication</topic><topic>Phonons</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Ye-Xiong</creatorcontrib><creatorcontrib>Gebremariam, Tesfay</creatorcontrib><creatorcontrib>Shen, Jian</creatorcontrib><creatorcontrib>Xiong, Biao</creatorcontrib><creatorcontrib>Li, Chong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Ye-Xiong</au><au>Gebremariam, Tesfay</au><au>Shen, Jian</au><au>Xiong, Biao</au><au>Li, Chong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of machine learning for predicting strong phonon blockade</atitle><jtitle>Applied physics letters</jtitle><date>2021-04-19</date><risdate>2021</risdate><volume>118</volume><issue>16</issue><spage>164003</spage><pages>164003-</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Observing the phonon blockade in a nanomechanical oscillator is clear evidence of its quantum nature. However, it is still a severe challenge to measure the strong phonon blockade in an optomechanical system with effective nonlinear coupling. In this paper, we put forward a theoretical proposal for predicting the phonon blockade effect in a quadratically coupled optomechanical system by exploiting supervised machine learning. The detected optical signals are injected into the neural network as the input, while the output is the mechanical equal-time second-order correlation. Our results show that our scheme has great advantages in predicting phonon blockade. Specifically, it is effective and feasible for nonlinear coupling systems; it shows a high precision for predicting strong phonon blockade; it is robust against the slight disturbance of systemic parameters. The trained neural network is convenient for measuring phonon blockade directly in the experiment. Our work provides a promising way to predict phonon blockade in nonlinear coupled quantum systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0035498</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5982-8983</orcidid><orcidid>https://orcid.org/0000-0003-4627-7307</orcidid><orcidid>https://orcid.org/0000-0003-4634-3132</orcidid><orcidid>https://orcid.org/0000-0001-9165-3995</orcidid><orcidid>https://orcid.org/0000-0002-6198-407X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-04, Vol.118 (16), p.164003
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2516453541
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Coupling
Machine learning
Neural networks
Nonlinear systems
Optical communication
Phonons
System effectiveness
title Application of machine learning for predicting strong phonon blockade
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20machine%20learning%20for%20predicting%20strong%20phonon%20blockade&rft.jtitle=Applied%20physics%20letters&rft.au=Zeng,%20Ye-Xiong&rft.date=2021-04-19&rft.volume=118&rft.issue=16&rft.spage=164003&rft.pages=164003-&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0035498&rft_dat=%3Cproquest_cross%3E2516453541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516453541&rft_id=info:pmid/&rfr_iscdi=true