Lyapunov-based Methods for Maximizing the Domain of Attraction
This paper investigates Lyapunov approaches to expand the domain of attraction (DA) of nonlinear autonomous models. These techniques had been examined for creating generic numerical procedures centred on the search of rational and quadratic Lyapunov functions. The outcomes are derived from all inves...
Gespeichert in:
Veröffentlicht in: | International journal of computers, communications & control communications & control, 2020-10, Vol.15 (5) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | International journal of computers, communications & control |
container_volume | 15 |
creator | JERBI, Houssem Mahmoud HAMIDI, Faiçal BEN AOUN, Sondess OLTEANU, Severus Constantin POPESCU, Dumitru |
description | This paper investigates Lyapunov approaches to expand the domain of attraction (DA) of nonlinear autonomous models. These techniques had been examined for creating generic numerical procedures centred on the search of rational and quadratic Lyapunov functions. The outcomes are derived from all investigated methods: the method of estimation via Threshold Accepted Algorithm (TAA), the method of estimation via a Zubov technique and the method of estimation via a linear matrix inequality (LMI) optimization and genetic algorithms (GA). These methods are effective for a large group of nonlinear models, they have a significant ability of improvement of the attraction domain area and they are distinguished by an apparent propriety of direct application for compact and nonlinear models of high degree. The validity and the effectiveness of the examined techniques are established based on a simulation case analysis. The effectiveness of the presented methods is evaluated and discussed through the study of the renowned Van der Pol model. |
doi_str_mv | 10.15837/ijccc.2020.5.3898 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516416968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516416968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8708c90c65bd1bdeb8c6d813dee1c93a9480c685f9e3e5d65694852a2910eb113</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWGq_gKeA510zySZNLkKpf6HFi55DNsnaFLupSSrqp3fbinN5w3uPGfghdAmkBi7Z9DqsrbU1JZTUvGZSyRM0AtlApWTTnP7vTJyjSc5rMgyjkkz5CN0svs1218fPqjXZO7z0ZRVdxl1MeGm-wib8hP4Nl5XHt3FjQo9jh2elJGNLiP0FOuvMe_aTPx2j1_u7l_ljtXh-eJrPFpVloEolp0RaRazgrYPW-VZa4SQw5z1YxYxq5BBK3inPPHeCi8Hh1FAFxLcAbIyujne3KX7sfC56HXepH15qykE0IJSQQ4seWzbFnJPv9DaFjUnfGog-oNIHVHqPSnO9R8V-Aa3BXFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516416968</pqid></control><display><type>article</type><title>Lyapunov-based Methods for Maximizing the Domain of Attraction</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>JERBI, Houssem Mahmoud ; HAMIDI, Faiçal ; BEN AOUN, Sondess ; OLTEANU, Severus Constantin ; POPESCU, Dumitru</creator><creatorcontrib>JERBI, Houssem Mahmoud ; HAMIDI, Faiçal ; BEN AOUN, Sondess ; OLTEANU, Severus Constantin ; POPESCU, Dumitru</creatorcontrib><description>This paper investigates Lyapunov approaches to expand the domain of attraction (DA) of nonlinear autonomous models. These techniques had been examined for creating generic numerical procedures centred on the search of rational and quadratic Lyapunov functions. The outcomes are derived from all investigated methods: the method of estimation via Threshold Accepted Algorithm (TAA), the method of estimation via a Zubov technique and the method of estimation via a linear matrix inequality (LMI) optimization and genetic algorithms (GA). These methods are effective for a large group of nonlinear models, they have a significant ability of improvement of the attraction domain area and they are distinguished by an apparent propriety of direct application for compact and nonlinear models of high degree. The validity and the effectiveness of the examined techniques are established based on a simulation case analysis. The effectiveness of the presented methods is evaluated and discussed through the study of the renowned Van der Pol model.</description><identifier>ISSN: 1841-9836</identifier><identifier>EISSN: 1841-9844</identifier><identifier>DOI: 10.15837/ijccc.2020.5.3898</identifier><language>eng</language><publisher>Oradea: Agora University of Oradea</publisher><subject>Algorithms ; Attraction ; Domains ; Genetic algorithms ; Liapunov functions ; Linear matrix inequalities ; Mathematical analysis ; Optimization</subject><ispartof>International journal of computers, communications & control, 2020-10, Vol.15 (5)</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8708c90c65bd1bdeb8c6d813dee1c93a9480c685f9e3e5d65694852a2910eb113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>JERBI, Houssem Mahmoud</creatorcontrib><creatorcontrib>HAMIDI, Faiçal</creatorcontrib><creatorcontrib>BEN AOUN, Sondess</creatorcontrib><creatorcontrib>OLTEANU, Severus Constantin</creatorcontrib><creatorcontrib>POPESCU, Dumitru</creatorcontrib><title>Lyapunov-based Methods for Maximizing the Domain of Attraction</title><title>International journal of computers, communications & control</title><description>This paper investigates Lyapunov approaches to expand the domain of attraction (DA) of nonlinear autonomous models. These techniques had been examined for creating generic numerical procedures centred on the search of rational and quadratic Lyapunov functions. The outcomes are derived from all investigated methods: the method of estimation via Threshold Accepted Algorithm (TAA), the method of estimation via a Zubov technique and the method of estimation via a linear matrix inequality (LMI) optimization and genetic algorithms (GA). These methods are effective for a large group of nonlinear models, they have a significant ability of improvement of the attraction domain area and they are distinguished by an apparent propriety of direct application for compact and nonlinear models of high degree. The validity and the effectiveness of the examined techniques are established based on a simulation case analysis. The effectiveness of the presented methods is evaluated and discussed through the study of the renowned Van der Pol model.</description><subject>Algorithms</subject><subject>Attraction</subject><subject>Domains</subject><subject>Genetic algorithms</subject><subject>Liapunov functions</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><issn>1841-9836</issn><issn>1841-9844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kE9LAzEQxYMoWGq_gKeA510zySZNLkKpf6HFi55DNsnaFLupSSrqp3fbinN5w3uPGfghdAmkBi7Z9DqsrbU1JZTUvGZSyRM0AtlApWTTnP7vTJyjSc5rMgyjkkz5CN0svs1218fPqjXZO7z0ZRVdxl1MeGm-wib8hP4Nl5XHt3FjQo9jh2elJGNLiP0FOuvMe_aTPx2j1_u7l_ljtXh-eJrPFpVloEolp0RaRazgrYPW-VZa4SQw5z1YxYxq5BBK3inPPHeCi8Hh1FAFxLcAbIyujne3KX7sfC56HXepH15qykE0IJSQQ4seWzbFnJPv9DaFjUnfGog-oNIHVHqPSnO9R8V-Aa3BXFs</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>JERBI, Houssem Mahmoud</creator><creator>HAMIDI, Faiçal</creator><creator>BEN AOUN, Sondess</creator><creator>OLTEANU, Severus Constantin</creator><creator>POPESCU, Dumitru</creator><general>Agora University of Oradea</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20201001</creationdate><title>Lyapunov-based Methods for Maximizing the Domain of Attraction</title><author>JERBI, Houssem Mahmoud ; HAMIDI, Faiçal ; BEN AOUN, Sondess ; OLTEANU, Severus Constantin ; POPESCU, Dumitru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8708c90c65bd1bdeb8c6d813dee1c93a9480c685f9e3e5d65694852a2910eb113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Attraction</topic><topic>Domains</topic><topic>Genetic algorithms</topic><topic>Liapunov functions</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JERBI, Houssem Mahmoud</creatorcontrib><creatorcontrib>HAMIDI, Faiçal</creatorcontrib><creatorcontrib>BEN AOUN, Sondess</creatorcontrib><creatorcontrib>OLTEANU, Severus Constantin</creatorcontrib><creatorcontrib>POPESCU, Dumitru</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of computers, communications & control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JERBI, Houssem Mahmoud</au><au>HAMIDI, Faiçal</au><au>BEN AOUN, Sondess</au><au>OLTEANU, Severus Constantin</au><au>POPESCU, Dumitru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyapunov-based Methods for Maximizing the Domain of Attraction</atitle><jtitle>International journal of computers, communications & control</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>15</volume><issue>5</issue><issn>1841-9836</issn><eissn>1841-9844</eissn><abstract>This paper investigates Lyapunov approaches to expand the domain of attraction (DA) of nonlinear autonomous models. These techniques had been examined for creating generic numerical procedures centred on the search of rational and quadratic Lyapunov functions. The outcomes are derived from all investigated methods: the method of estimation via Threshold Accepted Algorithm (TAA), the method of estimation via a Zubov technique and the method of estimation via a linear matrix inequality (LMI) optimization and genetic algorithms (GA). These methods are effective for a large group of nonlinear models, they have a significant ability of improvement of the attraction domain area and they are distinguished by an apparent propriety of direct application for compact and nonlinear models of high degree. The validity and the effectiveness of the examined techniques are established based on a simulation case analysis. The effectiveness of the presented methods is evaluated and discussed through the study of the renowned Van der Pol model.</abstract><cop>Oradea</cop><pub>Agora University of Oradea</pub><doi>10.15837/ijccc.2020.5.3898</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1841-9836 |
ispartof | International journal of computers, communications & control, 2020-10, Vol.15 (5) |
issn | 1841-9836 1841-9844 |
language | eng |
recordid | cdi_proquest_journals_2516416968 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Attraction Domains Genetic algorithms Liapunov functions Linear matrix inequalities Mathematical analysis Optimization |
title | Lyapunov-based Methods for Maximizing the Domain of Attraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyapunov-based%20Methods%20for%20Maximizing%20the%20Domain%20of%20Attraction&rft.jtitle=International%20journal%20of%20computers,%20communications%20&%20control&rft.au=JERBI,%20Houssem%20Mahmoud&rft.date=2020-10-01&rft.volume=15&rft.issue=5&rft.issn=1841-9836&rft.eissn=1841-9844&rft_id=info:doi/10.15837/ijccc.2020.5.3898&rft_dat=%3Cproquest_cross%3E2516416968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516416968&rft_id=info:pmid/&rfr_iscdi=true |