Lyapunov-based Methods for Maximizing the Domain of Attraction

This paper investigates Lyapunov approaches to expand the domain of attraction (DA) of nonlinear autonomous models. These techniques had been examined for creating generic numerical procedures centred on the search of rational and quadratic Lyapunov functions. The outcomes are derived from all inves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computers, communications & control communications & control, 2020-10, Vol.15 (5)
Hauptverfasser: JERBI, Houssem Mahmoud, HAMIDI, Faiçal, BEN AOUN, Sondess, OLTEANU, Severus Constantin, POPESCU, Dumitru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title International journal of computers, communications & control
container_volume 15
creator JERBI, Houssem Mahmoud
HAMIDI, Faiçal
BEN AOUN, Sondess
OLTEANU, Severus Constantin
POPESCU, Dumitru
description This paper investigates Lyapunov approaches to expand the domain of attraction (DA) of nonlinear autonomous models. These techniques had been examined for creating generic numerical procedures centred on the search of rational and quadratic Lyapunov functions. The outcomes are derived from all investigated methods: the method of estimation via Threshold Accepted Algorithm (TAA), the method of estimation via a Zubov technique and the method of estimation via a linear matrix inequality (LMI) optimization and genetic algorithms (GA). These methods are effective for a large group of nonlinear models, they have a significant ability of improvement of the attraction domain area and they are distinguished by an apparent propriety of direct application for compact and nonlinear models of high degree. The validity and the effectiveness of the examined techniques are established based on a simulation case analysis. The effectiveness of the presented methods is evaluated and discussed through the study of the renowned Van der Pol model.
doi_str_mv 10.15837/ijccc.2020.5.3898
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516416968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516416968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8708c90c65bd1bdeb8c6d813dee1c93a9480c685f9e3e5d65694852a2910eb113</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWGq_gKeA510zySZNLkKpf6HFi55DNsnaFLupSSrqp3fbinN5w3uPGfghdAmkBi7Z9DqsrbU1JZTUvGZSyRM0AtlApWTTnP7vTJyjSc5rMgyjkkz5CN0svs1218fPqjXZO7z0ZRVdxl1MeGm-wib8hP4Nl5XHt3FjQo9jh2elJGNLiP0FOuvMe_aTPx2j1_u7l_ljtXh-eJrPFpVloEolp0RaRazgrYPW-VZa4SQw5z1YxYxq5BBK3inPPHeCi8Hh1FAFxLcAbIyujne3KX7sfC56HXepH15qykE0IJSQQ4seWzbFnJPv9DaFjUnfGog-oNIHVHqPSnO9R8V-Aa3BXFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516416968</pqid></control><display><type>article</type><title>Lyapunov-based Methods for Maximizing the Domain of Attraction</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>JERBI, Houssem Mahmoud ; HAMIDI, Faiçal ; BEN AOUN, Sondess ; OLTEANU, Severus Constantin ; POPESCU, Dumitru</creator><creatorcontrib>JERBI, Houssem Mahmoud ; HAMIDI, Faiçal ; BEN AOUN, Sondess ; OLTEANU, Severus Constantin ; POPESCU, Dumitru</creatorcontrib><description>This paper investigates Lyapunov approaches to expand the domain of attraction (DA) of nonlinear autonomous models. These techniques had been examined for creating generic numerical procedures centred on the search of rational and quadratic Lyapunov functions. The outcomes are derived from all investigated methods: the method of estimation via Threshold Accepted Algorithm (TAA), the method of estimation via a Zubov technique and the method of estimation via a linear matrix inequality (LMI) optimization and genetic algorithms (GA). These methods are effective for a large group of nonlinear models, they have a significant ability of improvement of the attraction domain area and they are distinguished by an apparent propriety of direct application for compact and nonlinear models of high degree. The validity and the effectiveness of the examined techniques are established based on a simulation case analysis. The effectiveness of the presented methods is evaluated and discussed through the study of the renowned Van der Pol model.</description><identifier>ISSN: 1841-9836</identifier><identifier>EISSN: 1841-9844</identifier><identifier>DOI: 10.15837/ijccc.2020.5.3898</identifier><language>eng</language><publisher>Oradea: Agora University of Oradea</publisher><subject>Algorithms ; Attraction ; Domains ; Genetic algorithms ; Liapunov functions ; Linear matrix inequalities ; Mathematical analysis ; Optimization</subject><ispartof>International journal of computers, communications &amp; control, 2020-10, Vol.15 (5)</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8708c90c65bd1bdeb8c6d813dee1c93a9480c685f9e3e5d65694852a2910eb113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>JERBI, Houssem Mahmoud</creatorcontrib><creatorcontrib>HAMIDI, Faiçal</creatorcontrib><creatorcontrib>BEN AOUN, Sondess</creatorcontrib><creatorcontrib>OLTEANU, Severus Constantin</creatorcontrib><creatorcontrib>POPESCU, Dumitru</creatorcontrib><title>Lyapunov-based Methods for Maximizing the Domain of Attraction</title><title>International journal of computers, communications &amp; control</title><description>This paper investigates Lyapunov approaches to expand the domain of attraction (DA) of nonlinear autonomous models. These techniques had been examined for creating generic numerical procedures centred on the search of rational and quadratic Lyapunov functions. The outcomes are derived from all investigated methods: the method of estimation via Threshold Accepted Algorithm (TAA), the method of estimation via a Zubov technique and the method of estimation via a linear matrix inequality (LMI) optimization and genetic algorithms (GA). These methods are effective for a large group of nonlinear models, they have a significant ability of improvement of the attraction domain area and they are distinguished by an apparent propriety of direct application for compact and nonlinear models of high degree. The validity and the effectiveness of the examined techniques are established based on a simulation case analysis. The effectiveness of the presented methods is evaluated and discussed through the study of the renowned Van der Pol model.</description><subject>Algorithms</subject><subject>Attraction</subject><subject>Domains</subject><subject>Genetic algorithms</subject><subject>Liapunov functions</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><issn>1841-9836</issn><issn>1841-9844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kE9LAzEQxYMoWGq_gKeA510zySZNLkKpf6HFi55DNsnaFLupSSrqp3fbinN5w3uPGfghdAmkBi7Z9DqsrbU1JZTUvGZSyRM0AtlApWTTnP7vTJyjSc5rMgyjkkz5CN0svs1218fPqjXZO7z0ZRVdxl1MeGm-wib8hP4Nl5XHt3FjQo9jh2elJGNLiP0FOuvMe_aTPx2j1_u7l_ljtXh-eJrPFpVloEolp0RaRazgrYPW-VZa4SQw5z1YxYxq5BBK3inPPHeCi8Hh1FAFxLcAbIyujne3KX7sfC56HXepH15qykE0IJSQQ4seWzbFnJPv9DaFjUnfGog-oNIHVHqPSnO9R8V-Aa3BXFs</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>JERBI, Houssem Mahmoud</creator><creator>HAMIDI, Faiçal</creator><creator>BEN AOUN, Sondess</creator><creator>OLTEANU, Severus Constantin</creator><creator>POPESCU, Dumitru</creator><general>Agora University of Oradea</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20201001</creationdate><title>Lyapunov-based Methods for Maximizing the Domain of Attraction</title><author>JERBI, Houssem Mahmoud ; HAMIDI, Faiçal ; BEN AOUN, Sondess ; OLTEANU, Severus Constantin ; POPESCU, Dumitru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8708c90c65bd1bdeb8c6d813dee1c93a9480c685f9e3e5d65694852a2910eb113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Attraction</topic><topic>Domains</topic><topic>Genetic algorithms</topic><topic>Liapunov functions</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JERBI, Houssem Mahmoud</creatorcontrib><creatorcontrib>HAMIDI, Faiçal</creatorcontrib><creatorcontrib>BEN AOUN, Sondess</creatorcontrib><creatorcontrib>OLTEANU, Severus Constantin</creatorcontrib><creatorcontrib>POPESCU, Dumitru</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of computers, communications &amp; control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JERBI, Houssem Mahmoud</au><au>HAMIDI, Faiçal</au><au>BEN AOUN, Sondess</au><au>OLTEANU, Severus Constantin</au><au>POPESCU, Dumitru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyapunov-based Methods for Maximizing the Domain of Attraction</atitle><jtitle>International journal of computers, communications &amp; control</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>15</volume><issue>5</issue><issn>1841-9836</issn><eissn>1841-9844</eissn><abstract>This paper investigates Lyapunov approaches to expand the domain of attraction (DA) of nonlinear autonomous models. These techniques had been examined for creating generic numerical procedures centred on the search of rational and quadratic Lyapunov functions. The outcomes are derived from all investigated methods: the method of estimation via Threshold Accepted Algorithm (TAA), the method of estimation via a Zubov technique and the method of estimation via a linear matrix inequality (LMI) optimization and genetic algorithms (GA). These methods are effective for a large group of nonlinear models, they have a significant ability of improvement of the attraction domain area and they are distinguished by an apparent propriety of direct application for compact and nonlinear models of high degree. The validity and the effectiveness of the examined techniques are established based on a simulation case analysis. The effectiveness of the presented methods is evaluated and discussed through the study of the renowned Van der Pol model.</abstract><cop>Oradea</cop><pub>Agora University of Oradea</pub><doi>10.15837/ijccc.2020.5.3898</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1841-9836
ispartof International journal of computers, communications & control, 2020-10, Vol.15 (5)
issn 1841-9836
1841-9844
language eng
recordid cdi_proquest_journals_2516416968
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Attraction
Domains
Genetic algorithms
Liapunov functions
Linear matrix inequalities
Mathematical analysis
Optimization
title Lyapunov-based Methods for Maximizing the Domain of Attraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyapunov-based%20Methods%20for%20Maximizing%20the%20Domain%20of%20Attraction&rft.jtitle=International%20journal%20of%20computers,%20communications%20&%20control&rft.au=JERBI,%20Houssem%20Mahmoud&rft.date=2020-10-01&rft.volume=15&rft.issue=5&rft.issn=1841-9836&rft.eissn=1841-9844&rft_id=info:doi/10.15837/ijccc.2020.5.3898&rft_dat=%3Cproquest_cross%3E2516416968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516416968&rft_id=info:pmid/&rfr_iscdi=true