Triassic–Jurassic Accretionary History and Tectonic Origin of Stikinia From U‐Pb Geochronology and Lu‐Hf Isotope Analysis, British Columbia
The timing of assembly and tectonic origins of terranes in the northern Cordillera of Alaska, British Columbia, and the Pacific Northwest are debated. Stikinia, a long‐lived arc terrane, has an enigmatic regional Mesozoic accretionary history and its tectonic origins remain unconstrained. Zircon U‐P...
Gespeichert in:
Veröffentlicht in: | Tectonics (Washington, D.C.) D.C.), 2021-04, Vol.40 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Tectonics (Washington, D.C.) |
container_volume | 40 |
creator | George, S. W. M. Nelson, J. L. Alberts, D. Greig, C. J. Gehrels, G. E. |
description | The timing of assembly and tectonic origins of terranes in the northern Cordillera of Alaska, British Columbia, and the Pacific Northwest are debated. Stikinia, a long‐lived arc terrane, has an enigmatic regional Mesozoic accretionary history and its tectonic origins remain unconstrained. Zircon U‐Pb geochronology and Lu‐Hf isotopic data on Triassic–Jurassic sedimentary and igneous rocks from central Stikinia shed light on the terrane‐scale effects of a latest Triassic–Early Jurassic collision between Stikinia and pericratonic Yukon‐Tanana terrane. Main age peaks from central Stikinia are 250–160 Ma, reflecting ongoing Mesozoic arc‐related igneous activity within Stikinia. Comparison of isotopic evolution and unconformity development between central Stikinia and northern Stikinia (Whitehorse trough) provide new constraints on regional latest Triassic–earliest Jurassic deformation. We attribute the shortening‐related deformation to variable along‐strike interactions during end‐on collision with the Yukon‐Tanana terrane, with significant crustal thickening at the northern apex of Stikinia that did not persist farther south. A small pre‐Devonian zircon population is significant, as the oldest exposed rocks in Stikinia are Early Devonian. Pre‐Devonian age peaks differ from those of the northern Yukon‐Tanana terrane, but resemble zircons from southern Wrangellia. These zircons are likely multi‐cyclic, derived from crust that originated in the Arctic region near the northern end of the Caledonide orogeny. We suggest that Stikinia was an independent crustal block prior to latest Triassic onset of collision with Yukon‐Tanana terrane. The ongoing, end‐on collision in turn promoted oroclinal assembly of the peri‐Laurentian terranes.
Key Points
Regional Triassic–Jurassic deformation in Stikinia is attributed to collision with the Yukon‐Tanana terrane
End‐on collision of Stikinia with the Yukon‐Tanana terrane promoted oroclinal assembly of the Intermontane terranes
Pre‐Devonian zircons in Mesozoic sedimentary rocks suggest that Stikinia and the Yukon‐Tanana terrane remained separate until the Mesozoic |
doi_str_mv | 10.1029/2020TC006505 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2516282534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516282534</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3687-93d6afe2833387f4c656e3822adb81fd0fb86e9416ad9880d657401884ed35003</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4wCW2DbgvzjOskT0B1UqEuk6chKndUnjYidC3fUIIG7Yk2AoC1Zs5o0034zePACuMbrFiMR3BBGUJgjxEIUnoIdjxoLY11PQQyQSQcRQdA4unFsjhFnIeQ98pFZL53Rx2H8-dvanhcOisKrVppF2ByfatcarbEqYqqI1jSfmVi91A00Fn1v9ohst4ciaDVwc9u9PORwrU6ysaUxtlsfNWecnkwpOnWnNVsFhI-ud024A761utVvBxNTdJtfyEpxVsnbq6lf7YDF6SJNJMJuPp8lwFkjKRRTEtOSyUkRQSkVUsYKHXFFBiCxzgasSVbngKmaYyzIWApU89O9jIZgqaYgQ7YOb492tNa-dcm22Np31tlxGQsyJICFlnhocqcIa56yqsq3VG59LhlH2HXr2N3SP0yP-pmu1-5fN0ockJZjFEf0CVLmGbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516282534</pqid></control><display><type>article</type><title>Triassic–Jurassic Accretionary History and Tectonic Origin of Stikinia From U‐Pb Geochronology and Lu‐Hf Isotope Analysis, British Columbia</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>George, S. W. M. ; Nelson, J. L. ; Alberts, D. ; Greig, C. J. ; Gehrels, G. E.</creator><creatorcontrib>George, S. W. M. ; Nelson, J. L. ; Alberts, D. ; Greig, C. J. ; Gehrels, G. E.</creatorcontrib><description>The timing of assembly and tectonic origins of terranes in the northern Cordillera of Alaska, British Columbia, and the Pacific Northwest are debated. Stikinia, a long‐lived arc terrane, has an enigmatic regional Mesozoic accretionary history and its tectonic origins remain unconstrained. Zircon U‐Pb geochronology and Lu‐Hf isotopic data on Triassic–Jurassic sedimentary and igneous rocks from central Stikinia shed light on the terrane‐scale effects of a latest Triassic–Early Jurassic collision between Stikinia and pericratonic Yukon‐Tanana terrane. Main age peaks from central Stikinia are 250–160 Ma, reflecting ongoing Mesozoic arc‐related igneous activity within Stikinia. Comparison of isotopic evolution and unconformity development between central Stikinia and northern Stikinia (Whitehorse trough) provide new constraints on regional latest Triassic–earliest Jurassic deformation. We attribute the shortening‐related deformation to variable along‐strike interactions during end‐on collision with the Yukon‐Tanana terrane, with significant crustal thickening at the northern apex of Stikinia that did not persist farther south. A small pre‐Devonian zircon population is significant, as the oldest exposed rocks in Stikinia are Early Devonian. Pre‐Devonian age peaks differ from those of the northern Yukon‐Tanana terrane, but resemble zircons from southern Wrangellia. These zircons are likely multi‐cyclic, derived from crust that originated in the Arctic region near the northern end of the Caledonide orogeny. We suggest that Stikinia was an independent crustal block prior to latest Triassic onset of collision with Yukon‐Tanana terrane. The ongoing, end‐on collision in turn promoted oroclinal assembly of the peri‐Laurentian terranes.
Key Points
Regional Triassic–Jurassic deformation in Stikinia is attributed to collision with the Yukon‐Tanana terrane
End‐on collision of Stikinia with the Yukon‐Tanana terrane promoted oroclinal assembly of the Intermontane terranes
Pre‐Devonian zircons in Mesozoic sedimentary rocks suggest that Stikinia and the Yukon‐Tanana terrane remained separate until the Mesozoic</description><identifier>ISSN: 0278-7407</identifier><identifier>EISSN: 1944-9194</identifier><identifier>DOI: 10.1029/2020TC006505</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Accretion ; Arctic zone ; basement ; Canadian Cordillera ; Crustal thickness ; Deformation ; Devonian ; Geochronology ; Geochronometry ; Igneous rocks ; Isotopes ; Jurassic ; Mesozoic ; orocline ; Orogeny ; Stikinia ; Triassic ; Unconformity ; Yukon‐Tanana ; Zircon</subject><ispartof>Tectonics (Washington, D.C.), 2021-04, Vol.40 (4), p.n/a</ispartof><rights>2021. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3687-93d6afe2833387f4c656e3822adb81fd0fb86e9416ad9880d657401884ed35003</citedby><cites>FETCH-LOGICAL-a3687-93d6afe2833387f4c656e3822adb81fd0fb86e9416ad9880d657401884ed35003</cites><orcidid>0000-0001-8571-9433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020TC006505$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020TC006505$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,11495,27905,27906,45555,45556,46390,46449,46814,46873</link.rule.ids></links><search><creatorcontrib>George, S. W. M.</creatorcontrib><creatorcontrib>Nelson, J. L.</creatorcontrib><creatorcontrib>Alberts, D.</creatorcontrib><creatorcontrib>Greig, C. J.</creatorcontrib><creatorcontrib>Gehrels, G. E.</creatorcontrib><title>Triassic–Jurassic Accretionary History and Tectonic Origin of Stikinia From U‐Pb Geochronology and Lu‐Hf Isotope Analysis, British Columbia</title><title>Tectonics (Washington, D.C.)</title><description>The timing of assembly and tectonic origins of terranes in the northern Cordillera of Alaska, British Columbia, and the Pacific Northwest are debated. Stikinia, a long‐lived arc terrane, has an enigmatic regional Mesozoic accretionary history and its tectonic origins remain unconstrained. Zircon U‐Pb geochronology and Lu‐Hf isotopic data on Triassic–Jurassic sedimentary and igneous rocks from central Stikinia shed light on the terrane‐scale effects of a latest Triassic–Early Jurassic collision between Stikinia and pericratonic Yukon‐Tanana terrane. Main age peaks from central Stikinia are 250–160 Ma, reflecting ongoing Mesozoic arc‐related igneous activity within Stikinia. Comparison of isotopic evolution and unconformity development between central Stikinia and northern Stikinia (Whitehorse trough) provide new constraints on regional latest Triassic–earliest Jurassic deformation. We attribute the shortening‐related deformation to variable along‐strike interactions during end‐on collision with the Yukon‐Tanana terrane, with significant crustal thickening at the northern apex of Stikinia that did not persist farther south. A small pre‐Devonian zircon population is significant, as the oldest exposed rocks in Stikinia are Early Devonian. Pre‐Devonian age peaks differ from those of the northern Yukon‐Tanana terrane, but resemble zircons from southern Wrangellia. These zircons are likely multi‐cyclic, derived from crust that originated in the Arctic region near the northern end of the Caledonide orogeny. We suggest that Stikinia was an independent crustal block prior to latest Triassic onset of collision with Yukon‐Tanana terrane. The ongoing, end‐on collision in turn promoted oroclinal assembly of the peri‐Laurentian terranes.
Key Points
Regional Triassic–Jurassic deformation in Stikinia is attributed to collision with the Yukon‐Tanana terrane
End‐on collision of Stikinia with the Yukon‐Tanana terrane promoted oroclinal assembly of the Intermontane terranes
Pre‐Devonian zircons in Mesozoic sedimentary rocks suggest that Stikinia and the Yukon‐Tanana terrane remained separate until the Mesozoic</description><subject>Accretion</subject><subject>Arctic zone</subject><subject>basement</subject><subject>Canadian Cordillera</subject><subject>Crustal thickness</subject><subject>Deformation</subject><subject>Devonian</subject><subject>Geochronology</subject><subject>Geochronometry</subject><subject>Igneous rocks</subject><subject>Isotopes</subject><subject>Jurassic</subject><subject>Mesozoic</subject><subject>orocline</subject><subject>Orogeny</subject><subject>Stikinia</subject><subject>Triassic</subject><subject>Unconformity</subject><subject>Yukon‐Tanana</subject><subject>Zircon</subject><issn>0278-7407</issn><issn>1944-9194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqWw4wCW2DbgvzjOskT0B1UqEuk6chKndUnjYidC3fUIIG7Yk2AoC1Zs5o0034zePACuMbrFiMR3BBGUJgjxEIUnoIdjxoLY11PQQyQSQcRQdA4unFsjhFnIeQ98pFZL53Rx2H8-dvanhcOisKrVppF2ByfatcarbEqYqqI1jSfmVi91A00Fn1v9ohst4ciaDVwc9u9PORwrU6ysaUxtlsfNWecnkwpOnWnNVsFhI-ud024A761utVvBxNTdJtfyEpxVsnbq6lf7YDF6SJNJMJuPp8lwFkjKRRTEtOSyUkRQSkVUsYKHXFFBiCxzgasSVbngKmaYyzIWApU89O9jIZgqaYgQ7YOb492tNa-dcm22Np31tlxGQsyJICFlnhocqcIa56yqsq3VG59LhlH2HXr2N3SP0yP-pmu1-5fN0ockJZjFEf0CVLmGbw</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>George, S. W. M.</creator><creator>Nelson, J. L.</creator><creator>Alberts, D.</creator><creator>Greig, C. J.</creator><creator>Gehrels, G. E.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-8571-9433</orcidid></search><sort><creationdate>202104</creationdate><title>Triassic–Jurassic Accretionary History and Tectonic Origin of Stikinia From U‐Pb Geochronology and Lu‐Hf Isotope Analysis, British Columbia</title><author>George, S. W. M. ; Nelson, J. L. ; Alberts, D. ; Greig, C. J. ; Gehrels, G. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3687-93d6afe2833387f4c656e3822adb81fd0fb86e9416ad9880d657401884ed35003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accretion</topic><topic>Arctic zone</topic><topic>basement</topic><topic>Canadian Cordillera</topic><topic>Crustal thickness</topic><topic>Deformation</topic><topic>Devonian</topic><topic>Geochronology</topic><topic>Geochronometry</topic><topic>Igneous rocks</topic><topic>Isotopes</topic><topic>Jurassic</topic><topic>Mesozoic</topic><topic>orocline</topic><topic>Orogeny</topic><topic>Stikinia</topic><topic>Triassic</topic><topic>Unconformity</topic><topic>Yukon‐Tanana</topic><topic>Zircon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>George, S. W. M.</creatorcontrib><creatorcontrib>Nelson, J. L.</creatorcontrib><creatorcontrib>Alberts, D.</creatorcontrib><creatorcontrib>Greig, C. J.</creatorcontrib><creatorcontrib>Gehrels, G. E.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Tectonics (Washington, D.C.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>George, S. W. M.</au><au>Nelson, J. L.</au><au>Alberts, D.</au><au>Greig, C. J.</au><au>Gehrels, G. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triassic–Jurassic Accretionary History and Tectonic Origin of Stikinia From U‐Pb Geochronology and Lu‐Hf Isotope Analysis, British Columbia</atitle><jtitle>Tectonics (Washington, D.C.)</jtitle><date>2021-04</date><risdate>2021</risdate><volume>40</volume><issue>4</issue><epage>n/a</epage><issn>0278-7407</issn><eissn>1944-9194</eissn><abstract>The timing of assembly and tectonic origins of terranes in the northern Cordillera of Alaska, British Columbia, and the Pacific Northwest are debated. Stikinia, a long‐lived arc terrane, has an enigmatic regional Mesozoic accretionary history and its tectonic origins remain unconstrained. Zircon U‐Pb geochronology and Lu‐Hf isotopic data on Triassic–Jurassic sedimentary and igneous rocks from central Stikinia shed light on the terrane‐scale effects of a latest Triassic–Early Jurassic collision between Stikinia and pericratonic Yukon‐Tanana terrane. Main age peaks from central Stikinia are 250–160 Ma, reflecting ongoing Mesozoic arc‐related igneous activity within Stikinia. Comparison of isotopic evolution and unconformity development between central Stikinia and northern Stikinia (Whitehorse trough) provide new constraints on regional latest Triassic–earliest Jurassic deformation. We attribute the shortening‐related deformation to variable along‐strike interactions during end‐on collision with the Yukon‐Tanana terrane, with significant crustal thickening at the northern apex of Stikinia that did not persist farther south. A small pre‐Devonian zircon population is significant, as the oldest exposed rocks in Stikinia are Early Devonian. Pre‐Devonian age peaks differ from those of the northern Yukon‐Tanana terrane, but resemble zircons from southern Wrangellia. These zircons are likely multi‐cyclic, derived from crust that originated in the Arctic region near the northern end of the Caledonide orogeny. We suggest that Stikinia was an independent crustal block prior to latest Triassic onset of collision with Yukon‐Tanana terrane. The ongoing, end‐on collision in turn promoted oroclinal assembly of the peri‐Laurentian terranes.
Key Points
Regional Triassic–Jurassic deformation in Stikinia is attributed to collision with the Yukon‐Tanana terrane
End‐on collision of Stikinia with the Yukon‐Tanana terrane promoted oroclinal assembly of the Intermontane terranes
Pre‐Devonian zircons in Mesozoic sedimentary rocks suggest that Stikinia and the Yukon‐Tanana terrane remained separate until the Mesozoic</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2020TC006505</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-8571-9433</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-7407 |
ispartof | Tectonics (Washington, D.C.), 2021-04, Vol.40 (4), p.n/a |
issn | 0278-7407 1944-9194 |
language | eng |
recordid | cdi_proquest_journals_2516282534 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals |
subjects | Accretion Arctic zone basement Canadian Cordillera Crustal thickness Deformation Devonian Geochronology Geochronometry Igneous rocks Isotopes Jurassic Mesozoic orocline Orogeny Stikinia Triassic Unconformity Yukon‐Tanana Zircon |
title | Triassic–Jurassic Accretionary History and Tectonic Origin of Stikinia From U‐Pb Geochronology and Lu‐Hf Isotope Analysis, British Columbia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triassic%E2%80%93Jurassic%20Accretionary%20History%20and%20Tectonic%20Origin%20of%20Stikinia%20From%20U%E2%80%90Pb%20Geochronology%20and%20Lu%E2%80%90Hf%20Isotope%20Analysis,%20British%20Columbia&rft.jtitle=Tectonics%20(Washington,%20D.C.)&rft.au=George,%20S.%20W.%20M.&rft.date=2021-04&rft.volume=40&rft.issue=4&rft.epage=n/a&rft.issn=0278-7407&rft.eissn=1944-9194&rft_id=info:doi/10.1029/2020TC006505&rft_dat=%3Cproquest_cross%3E2516282534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516282534&rft_id=info:pmid/&rfr_iscdi=true |